Copied to
clipboard

?

G = (C2×D4)⋊7F5order 320 = 26·5

5th semidirect product of C2×D4 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×D4)⋊7F5, (D4×C10)⋊3C4, D5⋊(C23⋊C4), C23⋊F53C2, C231(C2×F5), D10.5(C2×D4), (C23×D5)⋊7C4, C22⋊F52C22, D10.D43C2, (C22×D5).67D4, C22.1(C22⋊F5), D10.43(C22⋊C4), C22.11(C22×F5), (C2×D20).139C22, (C23×D5).87C22, (C22×D5).147C23, (C2×C4×D5)⋊4C4, C52(C2×C23⋊C4), (C2×C4)⋊1(C2×F5), (C2×D4×D5).7C2, (C2×C20)⋊2(C2×C4), (C2×C5⋊D4)⋊3C4, (C2×C22⋊F5)⋊2C2, (C22×C10)⋊2(C2×C4), (C2×Dic5)⋊3(C2×C4), (C22×D5)⋊4(C2×C4), C2.18(C2×C22⋊F5), C10.17(C2×C22⋊C4), (C2×C10).1(C22⋊C4), (C2×C10).73(C22×C4), (C2×C5⋊D4).87C22, SmallGroup(320,1108)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×D4)⋊7F5
C1C5C10D10C22×D5C22⋊F5C2×C22⋊F5 — (C2×D4)⋊7F5
C5C10C2×C10 — (C2×D4)⋊7F5

Subgroups: 1162 in 210 conjugacy classes, 50 normal (28 characteristic)
C1, C2, C2 [×10], C4 [×6], C22, C22 [×2], C22 [×22], C5, C2×C4, C2×C4 [×11], D4 [×8], C23 [×2], C23 [×13], D5 [×2], D5 [×4], C10, C10 [×4], C22⋊C4 [×6], C22×C4 [×3], C2×D4, C2×D4 [×7], C24 [×2], Dic5, C20, F5 [×4], D10 [×2], D10 [×2], D10 [×15], C2×C10, C2×C10 [×2], C2×C10 [×3], C23⋊C4 [×4], C2×C22⋊C4 [×2], C22×D4, C4×D5 [×2], D20 [×2], C2×Dic5, C5⋊D4 [×4], C2×C20, C5×D4 [×2], C2×F5 [×8], C22×D5 [×3], C22×D5 [×4], C22×D5 [×6], C22×C10 [×2], C2×C23⋊C4, C22⋊F5 [×4], C22⋊F5 [×2], C2×C4×D5, C2×D20, D4×D5 [×4], C2×C5⋊D4 [×2], D4×C10, C22×F5 [×2], C23×D5 [×2], D10.D4 [×2], C23⋊F5 [×2], C2×C22⋊F5 [×2], C2×D4×D5, (C2×D4)⋊7F5

Quotients:
C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], C23, C22⋊C4 [×4], C22×C4, C2×D4 [×2], F5, C23⋊C4 [×2], C2×C22⋊C4, C2×F5 [×3], C2×C23⋊C4, C22⋊F5 [×2], C22×F5, C2×C22⋊F5, (C2×D4)⋊7F5

Generators and relations
 G = < a,b,c,d,e | a2=b4=c2=d5=e4=1, ebe-1=ab=ba, ac=ca, ad=da, eae-1=ab2, cbc=b-1, bd=db, cd=dc, ece-1=b2c, ede-1=d3 >

Smallest permutation representation
On 40 points
Generators in S40
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 26 6 21)(2 27 7 22)(3 28 8 23)(4 29 9 24)(5 30 10 25)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(2 3 5 4)(7 8 10 9)(11 16)(12 18 15 19)(13 20 14 17)(21 31 26 36)(22 33 30 39)(23 35 29 37)(24 32 28 40)(25 34 27 38)

G:=sub<Sym(40)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38)>;

G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (2,3,5,4)(7,8,10,9)(11,16)(12,18,15,19)(13,20,14,17)(21,31,26,36)(22,33,30,39)(23,35,29,37)(24,32,28,40)(25,34,27,38) );

G=PermutationGroup([(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,26,6,21),(2,27,7,22),(3,28,8,23),(4,29,9,24),(5,30,10,25),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(2,3,5,4),(7,8,10,9),(11,16),(12,18,15,19),(13,20,14,17),(21,31,26,36),(22,33,30,39),(23,35,29,37),(24,32,28,40),(25,34,27,38)])

Matrix representation G ⊆ GL8(𝔽41)

10000000
01000000
00100000
00010000
0000283600
000091300
0000002836
000000913
,
10000000
01000000
00100000
00010000
000000400
000000040
00001000
00000100
,
400000000
040000000
004000000
000400000
000013500
0000322800
0000002836
000000913
,
404040400000
10000000
01000000
00100000
00001000
00000100
00000010
00000001
,
400000000
000400000
040000000
11110000
000040000
000038100
000000135
000000728

G:=sub<GL(8,GF(41))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,9,0,0,0,0,0,0,36,13,0,0,0,0,0,0,0,0,28,9,0,0,0,0,0,0,36,13],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,13,32,0,0,0,0,0,0,5,28,0,0,0,0,0,0,0,0,28,9,0,0,0,0,0,0,36,13],[40,1,0,0,0,0,0,0,40,0,1,0,0,0,0,0,40,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,0,0,0,1,0,0,0,0,0,40,0,1,0,0,0,0,0,0,0,0,40,38,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,13,7,0,0,0,0,0,0,5,28] >;

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B···4J 5 10A10B10C10D10E10F10G20A20B
order12222222222244···45101010101010102020
size1122245510101020420···204444888888

32 irreducible representations

dim1111111112444448
type++++++++++++
imageC1C2C2C2C2C4C4C4C4D4F5C23⋊C4C2×F5C2×F5C22⋊F5(C2×D4)⋊7F5
kernel(C2×D4)⋊7F5D10.D4C23⋊F5C2×C22⋊F5C2×D4×D5C2×C4×D5C2×C5⋊D4D4×C10C23×D5C22×D5C2×D4D5C2×C4C23C22C1
# reps1222122224121242

In GAP, Magma, Sage, TeX

(C_2\times D_4)\rtimes_7F_5
% in TeX

G:=Group("(C2xD4):7F5");
// GroupNames label

G:=SmallGroup(320,1108);
// by ID

G=gap.SmallGroup(320,1108);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,297,1684,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=e^4=1,e*b*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^2,c*b*c=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b^2*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽