Copied to
clipboard

?

G = C10×C41D4order 320 = 26·5

Direct product of C10 and C41D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C10×C41D4, C41(D4×C10), C2012(C2×D4), (C2×C20)⋊33D4, C4218(C2×C10), (C2×C42)⋊11C10, (C4×C20)⋊59C22, (C22×D4)⋊5C10, (D4×C10)⋊63C22, C24.15(C2×C10), C22.63(D4×C10), (C2×C10).350C24, (C2×C20).961C23, C10.186(C22×D4), C23.8(C22×C10), (C23×C10).15C22, (C22×C10).88C23, C22.24(C23×C10), (C22×C20).596C22, (C2×C4×C20)⋊24C2, (C2×C4)⋊7(C5×D4), (D4×C2×C10)⋊20C2, C2.10(D4×C2×C10), (C2×D4)⋊11(C2×C10), (C2×C10).684(C2×D4), (C22×C4).124(C2×C10), (C2×C4).136(C22×C10), SmallGroup(320,1532)

Series: Derived Chief Lower central Upper central

C1C22 — C10×C41D4
C1C2C22C2×C10C22×C10D4×C10C5×C41D4 — C10×C41D4
C1C22 — C10×C41D4
C1C22×C10 — C10×C41D4

Subgroups: 882 in 498 conjugacy classes, 210 normal (10 characteristic)
C1, C2 [×7], C2 [×8], C4 [×12], C22, C22 [×6], C22 [×40], C5, C2×C4 [×18], D4 [×48], C23, C23 [×8], C23 [×24], C10 [×7], C10 [×8], C42 [×4], C22×C4 [×3], C2×D4 [×24], C2×D4 [×24], C24 [×4], C20 [×12], C2×C10, C2×C10 [×6], C2×C10 [×40], C2×C42, C41D4 [×8], C22×D4 [×6], C2×C20 [×18], C5×D4 [×48], C22×C10, C22×C10 [×8], C22×C10 [×24], C2×C41D4, C4×C20 [×4], C22×C20 [×3], D4×C10 [×24], D4×C10 [×24], C23×C10 [×4], C2×C4×C20, C5×C41D4 [×8], D4×C2×C10 [×6], C10×C41D4

Quotients:
C1, C2 [×15], C22 [×35], C5, D4 [×12], C23 [×15], C10 [×15], C2×D4 [×18], C24, C2×C10 [×35], C41D4 [×4], C22×D4 [×3], C5×D4 [×12], C22×C10 [×15], C2×C41D4, D4×C10 [×18], C23×C10, C5×C41D4 [×4], D4×C2×C10 [×3], C10×C41D4

Generators and relations
 G = < a,b,c,d | a10=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 16 46 154)(2 17 47 155)(3 18 48 156)(4 19 49 157)(5 20 50 158)(6 11 41 159)(7 12 42 160)(8 13 43 151)(9 14 44 152)(10 15 45 153)(21 68 40 57)(22 69 31 58)(23 70 32 59)(24 61 33 60)(25 62 34 51)(26 63 35 52)(27 64 36 53)(28 65 37 54)(29 66 38 55)(30 67 39 56)(71 150 110 111)(72 141 101 112)(73 142 102 113)(74 143 103 114)(75 144 104 115)(76 145 105 116)(77 146 106 117)(78 147 107 118)(79 148 108 119)(80 149 109 120)(81 134 94 121)(82 135 95 122)(83 136 96 123)(84 137 97 124)(85 138 98 125)(86 139 99 126)(87 140 100 127)(88 131 91 128)(89 132 92 129)(90 133 93 130)
(1 108 52 96)(2 109 53 97)(3 110 54 98)(4 101 55 99)(5 102 56 100)(6 103 57 91)(7 104 58 92)(8 105 59 93)(9 106 60 94)(10 107 51 95)(11 114 21 128)(12 115 22 129)(13 116 23 130)(14 117 24 121)(15 118 25 122)(16 119 26 123)(17 120 27 124)(18 111 28 125)(19 112 29 126)(20 113 30 127)(31 132 160 144)(32 133 151 145)(33 134 152 146)(34 135 153 147)(35 136 154 148)(36 137 155 149)(37 138 156 150)(38 139 157 141)(39 140 158 142)(40 131 159 143)(41 74 68 88)(42 75 69 89)(43 76 70 90)(44 77 61 81)(45 78 62 82)(46 79 63 83)(47 80 64 84)(48 71 65 85)(49 72 66 86)(50 73 67 87)
(1 114)(2 115)(3 116)(4 117)(5 118)(6 119)(7 120)(8 111)(9 112)(10 113)(11 108)(12 109)(13 110)(14 101)(15 102)(16 103)(17 104)(18 105)(19 106)(20 107)(21 96)(22 97)(23 98)(24 99)(25 100)(26 91)(27 92)(28 93)(29 94)(30 95)(31 84)(32 85)(33 86)(34 87)(35 88)(36 89)(37 90)(38 81)(39 82)(40 83)(41 148)(42 149)(43 150)(44 141)(45 142)(46 143)(47 144)(48 145)(49 146)(50 147)(51 127)(52 128)(53 129)(54 130)(55 121)(56 122)(57 123)(58 124)(59 125)(60 126)(61 139)(62 140)(63 131)(64 132)(65 133)(66 134)(67 135)(68 136)(69 137)(70 138)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,16,46,154)(2,17,47,155)(3,18,48,156)(4,19,49,157)(5,20,50,158)(6,11,41,159)(7,12,42,160)(8,13,43,151)(9,14,44,152)(10,15,45,153)(21,68,40,57)(22,69,31,58)(23,70,32,59)(24,61,33,60)(25,62,34,51)(26,63,35,52)(27,64,36,53)(28,65,37,54)(29,66,38,55)(30,67,39,56)(71,150,110,111)(72,141,101,112)(73,142,102,113)(74,143,103,114)(75,144,104,115)(76,145,105,116)(77,146,106,117)(78,147,107,118)(79,148,108,119)(80,149,109,120)(81,134,94,121)(82,135,95,122)(83,136,96,123)(84,137,97,124)(85,138,98,125)(86,139,99,126)(87,140,100,127)(88,131,91,128)(89,132,92,129)(90,133,93,130), (1,108,52,96)(2,109,53,97)(3,110,54,98)(4,101,55,99)(5,102,56,100)(6,103,57,91)(7,104,58,92)(8,105,59,93)(9,106,60,94)(10,107,51,95)(11,114,21,128)(12,115,22,129)(13,116,23,130)(14,117,24,121)(15,118,25,122)(16,119,26,123)(17,120,27,124)(18,111,28,125)(19,112,29,126)(20,113,30,127)(31,132,160,144)(32,133,151,145)(33,134,152,146)(34,135,153,147)(35,136,154,148)(36,137,155,149)(37,138,156,150)(38,139,157,141)(39,140,158,142)(40,131,159,143)(41,74,68,88)(42,75,69,89)(43,76,70,90)(44,77,61,81)(45,78,62,82)(46,79,63,83)(47,80,64,84)(48,71,65,85)(49,72,66,86)(50,73,67,87), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,111)(9,112)(10,113)(11,108)(12,109)(13,110)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,96)(22,97)(23,98)(24,99)(25,100)(26,91)(27,92)(28,93)(29,94)(30,95)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,81)(39,82)(40,83)(41,148)(42,149)(43,150)(44,141)(45,142)(46,143)(47,144)(48,145)(49,146)(50,147)(51,127)(52,128)(53,129)(54,130)(55,121)(56,122)(57,123)(58,124)(59,125)(60,126)(61,139)(62,140)(63,131)(64,132)(65,133)(66,134)(67,135)(68,136)(69,137)(70,138)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,16,46,154)(2,17,47,155)(3,18,48,156)(4,19,49,157)(5,20,50,158)(6,11,41,159)(7,12,42,160)(8,13,43,151)(9,14,44,152)(10,15,45,153)(21,68,40,57)(22,69,31,58)(23,70,32,59)(24,61,33,60)(25,62,34,51)(26,63,35,52)(27,64,36,53)(28,65,37,54)(29,66,38,55)(30,67,39,56)(71,150,110,111)(72,141,101,112)(73,142,102,113)(74,143,103,114)(75,144,104,115)(76,145,105,116)(77,146,106,117)(78,147,107,118)(79,148,108,119)(80,149,109,120)(81,134,94,121)(82,135,95,122)(83,136,96,123)(84,137,97,124)(85,138,98,125)(86,139,99,126)(87,140,100,127)(88,131,91,128)(89,132,92,129)(90,133,93,130), (1,108,52,96)(2,109,53,97)(3,110,54,98)(4,101,55,99)(5,102,56,100)(6,103,57,91)(7,104,58,92)(8,105,59,93)(9,106,60,94)(10,107,51,95)(11,114,21,128)(12,115,22,129)(13,116,23,130)(14,117,24,121)(15,118,25,122)(16,119,26,123)(17,120,27,124)(18,111,28,125)(19,112,29,126)(20,113,30,127)(31,132,160,144)(32,133,151,145)(33,134,152,146)(34,135,153,147)(35,136,154,148)(36,137,155,149)(37,138,156,150)(38,139,157,141)(39,140,158,142)(40,131,159,143)(41,74,68,88)(42,75,69,89)(43,76,70,90)(44,77,61,81)(45,78,62,82)(46,79,63,83)(47,80,64,84)(48,71,65,85)(49,72,66,86)(50,73,67,87), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,111)(9,112)(10,113)(11,108)(12,109)(13,110)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,96)(22,97)(23,98)(24,99)(25,100)(26,91)(27,92)(28,93)(29,94)(30,95)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,81)(39,82)(40,83)(41,148)(42,149)(43,150)(44,141)(45,142)(46,143)(47,144)(48,145)(49,146)(50,147)(51,127)(52,128)(53,129)(54,130)(55,121)(56,122)(57,123)(58,124)(59,125)(60,126)(61,139)(62,140)(63,131)(64,132)(65,133)(66,134)(67,135)(68,136)(69,137)(70,138)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,16,46,154),(2,17,47,155),(3,18,48,156),(4,19,49,157),(5,20,50,158),(6,11,41,159),(7,12,42,160),(8,13,43,151),(9,14,44,152),(10,15,45,153),(21,68,40,57),(22,69,31,58),(23,70,32,59),(24,61,33,60),(25,62,34,51),(26,63,35,52),(27,64,36,53),(28,65,37,54),(29,66,38,55),(30,67,39,56),(71,150,110,111),(72,141,101,112),(73,142,102,113),(74,143,103,114),(75,144,104,115),(76,145,105,116),(77,146,106,117),(78,147,107,118),(79,148,108,119),(80,149,109,120),(81,134,94,121),(82,135,95,122),(83,136,96,123),(84,137,97,124),(85,138,98,125),(86,139,99,126),(87,140,100,127),(88,131,91,128),(89,132,92,129),(90,133,93,130)], [(1,108,52,96),(2,109,53,97),(3,110,54,98),(4,101,55,99),(5,102,56,100),(6,103,57,91),(7,104,58,92),(8,105,59,93),(9,106,60,94),(10,107,51,95),(11,114,21,128),(12,115,22,129),(13,116,23,130),(14,117,24,121),(15,118,25,122),(16,119,26,123),(17,120,27,124),(18,111,28,125),(19,112,29,126),(20,113,30,127),(31,132,160,144),(32,133,151,145),(33,134,152,146),(34,135,153,147),(35,136,154,148),(36,137,155,149),(37,138,156,150),(38,139,157,141),(39,140,158,142),(40,131,159,143),(41,74,68,88),(42,75,69,89),(43,76,70,90),(44,77,61,81),(45,78,62,82),(46,79,63,83),(47,80,64,84),(48,71,65,85),(49,72,66,86),(50,73,67,87)], [(1,114),(2,115),(3,116),(4,117),(5,118),(6,119),(7,120),(8,111),(9,112),(10,113),(11,108),(12,109),(13,110),(14,101),(15,102),(16,103),(17,104),(18,105),(19,106),(20,107),(21,96),(22,97),(23,98),(24,99),(25,100),(26,91),(27,92),(28,93),(29,94),(30,95),(31,84),(32,85),(33,86),(34,87),(35,88),(36,89),(37,90),(38,81),(39,82),(40,83),(41,148),(42,149),(43,150),(44,141),(45,142),(46,143),(47,144),(48,145),(49,146),(50,147),(51,127),(52,128),(53,129),(54,130),(55,121),(56,122),(57,123),(58,124),(59,125),(60,126),(61,139),(62,140),(63,131),(64,132),(65,133),(66,134),(67,135),(68,136),(69,137),(70,138),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)])

Matrix representation G ⊆ GL5(𝔽41)

400000
01000
00100
000370
000037
,
400000
040200
040100
000342
000167
,
10000
01000
00100
000342
000167
,
400000
013900
004000
000400
000341

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,37,0,0,0,0,0,37],[40,0,0,0,0,0,40,40,0,0,0,2,1,0,0,0,0,0,34,16,0,0,0,2,7],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,34,16,0,0,0,2,7],[40,0,0,0,0,0,1,0,0,0,0,39,40,0,0,0,0,0,40,34,0,0,0,0,1] >;

140 conjugacy classes

class 1 2A···2G2H···2O4A···4L5A5B5C5D10A···10AB10AC···10BH20A···20AV
order12···22···24···4555510···1010···1020···20
size11···14···42···211111···14···42···2

140 irreducible representations

dim1111111122
type+++++
imageC1C2C2C2C5C10C10C10D4C5×D4
kernelC10×C41D4C2×C4×C20C5×C41D4D4×C2×C10C2×C41D4C2×C42C41D4C22×D4C2×C20C2×C4
# reps11864432241248

In GAP, Magma, Sage, TeX

C_{10}\times C_4\rtimes_1D_4
% in TeX

G:=Group("C10xC4:1D4");
// GroupNames label

G:=SmallGroup(320,1532);
// by ID

G=gap.SmallGroup(320,1532);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,568,3446,856]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽