Extensions 1→N→G→Q→1 with N=C8 and Q=C2xF5

Direct product G=NxQ with N=C8 and Q=C2xF5
dρLabelID
C2xC8xF580C2xC8xF5320,1054

Semidirect products G=N:Q with N=C8 and Q=C2xF5
extensionφ:Q→Aut NdρLabelID
C8:1(C2xF5) = M4(2):1F5φ: C2xF5/D5C22 ⊆ Aut C8408C8:1(C2xF5)320,1065
C8:2(C2xF5) = D40:C4φ: C2xF5/D5C22 ⊆ Aut C8408+C8:2(C2xF5)320,1069
C8:3(C2xF5) = SD16:F5φ: C2xF5/D5C22 ⊆ Aut C8408C8:3(C2xF5)320,1073
C8:4(C2xF5) = D8xF5φ: C2xF5/F5C2 ⊆ Aut C8408+C8:4(C2xF5)320,1068
C8:5(C2xF5) = SD16xF5φ: C2xF5/F5C2 ⊆ Aut C8408C8:5(C2xF5)320,1072
C8:6(C2xF5) = M4(2)xF5φ: C2xF5/F5C2 ⊆ Aut C8408C8:6(C2xF5)320,1064
C8:7(C2xF5) = C2xD5.D8φ: C2xF5/D10C2 ⊆ Aut C880C8:7(C2xF5)320,1058
C8:8(C2xF5) = C2xC40:C4φ: C2xF5/D10C2 ⊆ Aut C880C8:8(C2xF5)320,1057
C8:9(C2xF5) = C2xC8:F5φ: C2xF5/D10C2 ⊆ Aut C880C8:9(C2xF5)320,1055

Non-split extensions G=N.Q with N=C8 and Q=C2xF5
extensionφ:Q→Aut NdρLabelID
C8.1(C2xF5) = D10.D8φ: C2xF5/D5C22 ⊆ Aut C8808-C8.1(C2xF5)320,241
C8.2(C2xF5) = D40.C4φ: C2xF5/D5C22 ⊆ Aut C8808+C8.2(C2xF5)320,244
C8.3(C2xF5) = D40:1C4φ: C2xF5/D5C22 ⊆ Aut C8808+C8.3(C2xF5)320,245
C8.4(C2xF5) = Dic20.C4φ: C2xF5/D5C22 ⊆ Aut C81608-C8.4(C2xF5)320,248
C8.5(C2xF5) = M4(2).1F5φ: C2xF5/D5C22 ⊆ Aut C8808C8.5(C2xF5)320,1067
C8.6(C2xF5) = D8:F5φ: C2xF5/D5C22 ⊆ Aut C8808-C8.6(C2xF5)320,1071
C8.7(C2xF5) = SD16:2F5φ: C2xF5/D5C22 ⊆ Aut C8808C8.7(C2xF5)320,1075
C8.8(C2xF5) = Dic20:C4φ: C2xF5/D5C22 ⊆ Aut C8808-C8.8(C2xF5)320,1077
C8.9(C2xF5) = Q16:F5φ: C2xF5/D5C22 ⊆ Aut C8808+C8.9(C2xF5)320,1079
C8.10(C2xF5) = D5.D16φ: C2xF5/F5C2 ⊆ Aut C8808+C8.10(C2xF5)320,242
C8.11(C2xF5) = D8.F5φ: C2xF5/F5C2 ⊆ Aut C81608-C8.11(C2xF5)320,243
C8.12(C2xF5) = D5.Q32φ: C2xF5/F5C2 ⊆ Aut C8808-C8.12(C2xF5)320,246
C8.13(C2xF5) = Q16.F5φ: C2xF5/F5C2 ⊆ Aut C81608+C8.13(C2xF5)320,247
C8.14(C2xF5) = D8:5F5φ: C2xF5/F5C2 ⊆ Aut C8808-C8.14(C2xF5)320,1070
C8.15(C2xF5) = Q16xF5φ: C2xF5/F5C2 ⊆ Aut C8808-C8.15(C2xF5)320,1076
C8.16(C2xF5) = Q16:5F5φ: C2xF5/F5C2 ⊆ Aut C8808+C8.16(C2xF5)320,1078
C8.17(C2xF5) = SD16:3F5φ: C2xF5/F5C2 ⊆ Aut C8808C8.17(C2xF5)320,1074
C8.18(C2xF5) = Dic10.C8φ: C2xF5/F5C2 ⊆ Aut C81608C8.18(C2xF5)320,1063
C8.19(C2xF5) = M4(2):5F5φ: C2xF5/F5C2 ⊆ Aut C8808C8.19(C2xF5)320,1066
C8.20(C2xF5) = C80:2C4φ: C2xF5/D10C2 ⊆ Aut C8804C8.20(C2xF5)320,187
C8.21(C2xF5) = C80:3C4φ: C2xF5/D10C2 ⊆ Aut C8804C8.21(C2xF5)320,188
C8.22(C2xF5) = C16.F5φ: C2xF5/D10C2 ⊆ Aut C81604C8.22(C2xF5)320,189
C8.23(C2xF5) = C80.2C4φ: C2xF5/D10C2 ⊆ Aut C81604C8.23(C2xF5)320,190
C8.24(C2xF5) = C2xD10.Q8φ: C2xF5/D10C2 ⊆ Aut C8160C8.24(C2xF5)320,1061
C8.25(C2xF5) = C80:4C4φ: C2xF5/D10C2 ⊆ Aut C8804C8.25(C2xF5)320,185
C8.26(C2xF5) = C80:5C4φ: C2xF5/D10C2 ⊆ Aut C8804C8.26(C2xF5)320,186
C8.27(C2xF5) = (C2xC8):6F5φ: C2xF5/D10C2 ⊆ Aut C8804C8.27(C2xF5)320,1059
C8.28(C2xF5) = C2xC40.C4φ: C2xF5/D10C2 ⊆ Aut C8160C8.28(C2xF5)320,1060
C8.29(C2xF5) = (C8xD5).C4φ: C2xF5/D10C2 ⊆ Aut C8804C8.29(C2xF5)320,1062
C8.30(C2xF5) = C16:F5φ: C2xF5/D10C2 ⊆ Aut C8804C8.30(C2xF5)320,183
C8.31(C2xF5) = C16:4F5φ: C2xF5/D10C2 ⊆ Aut C8804C8.31(C2xF5)320,184
C8.32(C2xF5) = C2xC8.F5φ: C2xF5/D10C2 ⊆ Aut C8160C8.32(C2xF5)320,1052
C8.33(C2xF5) = D5:M5(2)φ: C2xF5/D10C2 ⊆ Aut C8804C8.33(C2xF5)320,1053
C8.34(C2xF5) = C20.12C42φ: C2xF5/D10C2 ⊆ Aut C8804C8.34(C2xF5)320,1056
C8.35(C2xF5) = D5:C32central extension (φ=1)1604C8.35(C2xF5)320,179
C8.36(C2xF5) = C80.C4central extension (φ=1)1604C8.36(C2xF5)320,180
C8.37(C2xF5) = C16xF5central extension (φ=1)804C8.37(C2xF5)320,181
C8.38(C2xF5) = C16:7F5central extension (φ=1)804C8.38(C2xF5)320,182
C8.39(C2xF5) = C2xC5:C32central extension (φ=1)320C8.39(C2xF5)320,214
C8.40(C2xF5) = C5:M6(2)central extension (φ=1)1604C8.40(C2xF5)320,215
C8.41(C2xF5) = C2xD5:C16central extension (φ=1)160C8.41(C2xF5)320,1051

׿
x
:
Z
F
o
wr
Q
<