# Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=F5

Direct product G=N×Q with N=C2×Q8 and Q=F5
dρLabelID
C2×Q8×F580C2xQ8xF5320,1599

Semidirect products G=N:Q with N=C2×Q8 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊1F5 = D10.Q16φ: F5/C5C4 ⊆ Out C2×Q880(C2xQ8):1F5320,264
(C2×Q8)⋊2F5 = (C2×Q8)⋊F5φ: F5/C5C4 ⊆ Out C2×Q8808+(C2xQ8):2F5320,266
(C2×Q8)⋊3F5 = C2×Q8⋊F5φ: F5/D5C2 ⊆ Out C2×Q880(C2xQ8):3F5320,1119
(C2×Q8)⋊4F5 = (C2×Q8)⋊4F5φ: F5/D5C2 ⊆ Out C2×Q8808-(C2xQ8):4F5320,1120
(C2×Q8)⋊5F5 = C2×Q82F5φ: F5/D5C2 ⊆ Out C2×Q880(C2xQ8):5F5320,1121
(C2×Q8)⋊6F5 = (C2×Q8)⋊6F5φ: F5/D5C2 ⊆ Out C2×Q8808+(C2xQ8):6F5320,1122
(C2×Q8)⋊7F5 = (C2×Q8)⋊7F5φ: F5/D5C2 ⊆ Out C2×Q8808+(C2xQ8):7F5320,1123
(C2×Q8)⋊8F5 = (C2×F5)⋊Q8φ: F5/D5C2 ⊆ Out C2×Q880(C2xQ8):8F5320,1128
(C2×Q8)⋊9F5 = D5.2- 1+4φ: F5/D5C2 ⊆ Out C2×Q8808-(C2xQ8):9F5320,1600

Non-split extensions G=N.Q with N=C2×Q8 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2×Q8).1F5 = (C2×Q8).F5φ: F5/C5C4 ⊆ Out C2×Q8160(C2xQ8).1F5320,265
(C2×Q8).2F5 = (Q8×C10).C4φ: F5/C5C4 ⊆ Out C2×Q8808-(C2xQ8).2F5320,267
(C2×Q8).3F5 = Dic5.Q16φ: F5/C5C4 ⊆ Out C2×Q8320(C2xQ8).3F5320,269
(C2×Q8).4F5 = Dic5.12Q16φ: F5/D5C2 ⊆ Out C2×Q8320(C2xQ8).4F5320,268
(C2×Q8).5F5 = (C2×Q8).5F5φ: F5/D5C2 ⊆ Out C2×Q8160(C2xQ8).5F5320,1125
(C2×Q8).6F5 = C20.6M4(2)φ: F5/D5C2 ⊆ Out C2×Q8320(C2xQ8).6F5320,1126
(C2×Q8).7F5 = (C2×Q8).7F5φ: F5/D5C2 ⊆ Out C2×Q8808-(C2xQ8).7F5320,1127
(C2×Q8).8F5 = Dic5.20C24φ: F5/D5C2 ⊆ Out C2×Q8808+(C2xQ8).8F5320,1598
(C2×Q8).9F5 = Q8×C5⋊C8φ: trivial image320(C2xQ8).9F5320,1124
(C2×Q8).10F5 = C2×Q8.F5φ: trivial image160(C2xQ8).10F5320,1597

׿
×
𝔽