Extensions 1→N→G→Q→1 with N=C2xD8 and Q=C10

Direct product G=NxQ with N=C2xD8 and Q=C10
dρLabelID
D8xC2xC10160D8xC2xC10320,1571

Semidirect products G=N:Q with N=C2xD8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xD8):1C10 = C5xC22:D8φ: C10/C5C2 ⊆ Out C2xD880(C2xD8):1C10320,948
(C2xD8):2C10 = C5xD4:D4φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8):2C10320,950
(C2xD8):3C10 = C5xC4:D8φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8):3C10320,960
(C2xD8):4C10 = C5xC8:7D4φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8):4C10320,967
(C2xD8):5C10 = C5xC8:4D4φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8):5C10320,994
(C2xD8):6C10 = C10xD16φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8):6C10320,1006
(C2xD8):7C10 = C5xC8:2D4φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8):7C10320,970
(C2xD8):8C10 = C5xD4.4D4φ: C10/C5C2 ⊆ Out C2xD8804(C2xD8):8C10320,973
(C2xD8):9C10 = C5xC8:3D4φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8):9C10320,997
(C2xD8):10C10 = C5xC16:C22φ: C10/C5C2 ⊆ Out C2xD8804(C2xD8):10C10320,1010
(C2xD8):11C10 = C10xC8:C22φ: C10/C5C2 ⊆ Out C2xD880(C2xD8):11C10320,1575
(C2xD8):12C10 = C5xD4oD8φ: C10/C5C2 ⊆ Out C2xD8804(C2xD8):12C10320,1578
(C2xD8):13C10 = C10xC4oD8φ: trivial image160(C2xD8):13C10320,1574

Non-split extensions G=N.Q with N=C2xD8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xD8).1C10 = C5xC2.D16φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8).1C10320,162
(C2xD8).2C10 = C5xD4.2D4φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8).2C10320,964
(C2xD8).3C10 = C5xC8.12D4φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8).3C10320,996
(C2xD8).4C10 = C10xSD32φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8).4C10320,1007
(C2xD8).5C10 = C5xM5(2):C2φ: C10/C5C2 ⊆ Out C2xD8804(C2xD8).5C10320,166
(C2xD8).6C10 = C5xD8:C4φ: C10/C5C2 ⊆ Out C2xD8160(C2xD8).6C10320,943
(C2xD8).7C10 = D8xC20φ: trivial image160(C2xD8).7C10320,938

׿
x
:
Z
F
o
wr
Q
<