Extensions 1→N→G→Q→1 with N=C2×D8 and Q=C10

Direct product G=N×Q with N=C2×D8 and Q=C10
dρLabelID
D8×C2×C10160D8xC2xC10320,1571

Semidirect products G=N:Q with N=C2×D8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×D8)⋊1C10 = C5×C22⋊D8φ: C10/C5C2 ⊆ Out C2×D880(C2xD8):1C10320,948
(C2×D8)⋊2C10 = C5×D4⋊D4φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8):2C10320,950
(C2×D8)⋊3C10 = C5×C4⋊D8φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8):3C10320,960
(C2×D8)⋊4C10 = C5×C87D4φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8):4C10320,967
(C2×D8)⋊5C10 = C5×C84D4φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8):5C10320,994
(C2×D8)⋊6C10 = C10×D16φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8):6C10320,1006
(C2×D8)⋊7C10 = C5×C82D4φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8):7C10320,970
(C2×D8)⋊8C10 = C5×D4.4D4φ: C10/C5C2 ⊆ Out C2×D8804(C2xD8):8C10320,973
(C2×D8)⋊9C10 = C5×C83D4φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8):9C10320,997
(C2×D8)⋊10C10 = C5×C16⋊C22φ: C10/C5C2 ⊆ Out C2×D8804(C2xD8):10C10320,1010
(C2×D8)⋊11C10 = C10×C8⋊C22φ: C10/C5C2 ⊆ Out C2×D880(C2xD8):11C10320,1575
(C2×D8)⋊12C10 = C5×D4○D8φ: C10/C5C2 ⊆ Out C2×D8804(C2xD8):12C10320,1578
(C2×D8)⋊13C10 = C10×C4○D8φ: trivial image160(C2xD8):13C10320,1574

Non-split extensions G=N.Q with N=C2×D8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×D8).1C10 = C5×C2.D16φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8).1C10320,162
(C2×D8).2C10 = C5×D4.2D4φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8).2C10320,964
(C2×D8).3C10 = C5×C8.12D4φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8).3C10320,996
(C2×D8).4C10 = C10×SD32φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8).4C10320,1007
(C2×D8).5C10 = C5×M5(2)⋊C2φ: C10/C5C2 ⊆ Out C2×D8804(C2xD8).5C10320,166
(C2×D8).6C10 = C5×D8⋊C4φ: C10/C5C2 ⊆ Out C2×D8160(C2xD8).6C10320,943
(C2×D8).7C10 = D8×C20φ: trivial image160(C2xD8).7C10320,938

׿
×
𝔽