extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xC4xDic5).1C2 = C20.32C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 80 | | (C2xC4xDic5).1C2 | 320,90 |
(C2xC4xDic5).2C2 = C20.33C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 80 | | (C2xC4xDic5).2C2 | 320,113 |
(C2xC4xDic5).3C2 = C20:4(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).3C2 | 320,600 |
(C2xC4xDic5).4C2 = (C2xDic5):6Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).4C2 | 320,601 |
(C2xC4xDic5).5C2 = C4:C4xDic5 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).5C2 | 320,602 |
(C2xC4xDic5).6C2 = C20:5(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).6C2 | 320,603 |
(C2xC4xDic5).7C2 = C20.48(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).7C2 | 320,604 |
(C2xC4xDic5).8C2 = C20:6(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).8C2 | 320,612 |
(C2xC4xDic5).9C2 = M4(2)xDic5 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).9C2 | 320,744 |
(C2xC4xDic5).10C2 = Dic5:5M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).10C2 | 320,745 |
(C2xC4xDic5).11C2 = (Q8xC10):17C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).11C2 | 320,857 |
(C2xC4xDic5).12C2 = C2xC20:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).12C2 | 320,1169 |
(C2xC4xDic5).13C2 = C2xC4.Dic10 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).13C2 | 320,1171 |
(C2xC4xDic5).14C2 = C42.88D10 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).14C2 | 320,1189 |
(C2xC4xDic5).15C2 = (Q8xDic5):C2 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).15C2 | 320,1294 |
(C2xC4xDic5).16C2 = C2xDic5:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).16C2 | 320,1482 |
(C2xC4xDic5).17C2 = C2xQ8xDic5 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).17C2 | 320,1483 |
(C2xC4xDic5).18C2 = (C2xC40):15C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).18C2 | 320,108 |
(C2xC4xDic5).19C2 = C10.(C4:C8) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).19C2 | 320,256 |
(C2xC4xDic5).20C2 = (C2xC20):Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).20C2 | 320,273 |
(C2xC4xDic5).21C2 = C10.49(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).21C2 | 320,274 |
(C2xC4xDic5).22C2 = Dic5.15C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).22C2 | 320,275 |
(C2xC4xDic5).23C2 = Dic5:2C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).23C2 | 320,276 |
(C2xC4xDic5).24C2 = C5:2(C42:8C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).24C2 | 320,277 |
(C2xC4xDic5).25C2 = C5:2(C42:5C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).25C2 | 320,278 |
(C2xC4xDic5).26C2 = C10.51(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).26C2 | 320,279 |
(C2xC4xDic5).27C2 = C2.(C4xD20) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).27C2 | 320,280 |
(C2xC4xDic5).28C2 = C4:Dic5:15C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).28C2 | 320,281 |
(C2xC4xDic5).29C2 = C10.52(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).29C2 | 320,282 |
(C2xC4xDic5).30C2 = Dic5.14M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).30C2 | 320,345 |
(C2xC4xDic5).31C2 = Dic5.9M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).31C2 | 320,346 |
(C2xC4xDic5).32C2 = C4xC10.D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).32C2 | 320,558 |
(C2xC4xDic5).33C2 = C42:4Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).33C2 | 320,559 |
(C2xC4xDic5).34C2 = C4xC4:Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).34C2 | 320,561 |
(C2xC4xDic5).35C2 = C10.96(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).35C2 | 320,599 |
(C2xC4xDic5).36C2 = C10.97(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).36C2 | 320,605 |
(C2xC4xDic5).37C2 = C4:C4:5Dic5 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).37C2 | 320,608 |
(C2xC4xDic5).38C2 = C2xC20.8Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).38C2 | 320,726 |
(C2xC4xDic5).39C2 = C2xC40:8C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).39C2 | 320,727 |
(C2xC4xDic5).40C2 = C2xC10.C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).40C2 | 320,1087 |
(C2xC4xDic5).41C2 = C2xDic5:C8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).41C2 | 320,1090 |
(C2xC4xDic5).42C2 = Dic5.13M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).42C2 | 320,1095 |
(C2xC4xDic5).43C2 = C2xC4xDic10 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).43C2 | 320,1139 |
(C2xC4xDic5).44C2 = C2xDic5:3Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).44C2 | 320,1168 |
(C2xC4xDic5).45C2 = C2xDic5.Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).45C2 | 320,1170 |
(C2xC4xDic5).46C2 = C2xC20:C8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).46C2 | 320,1085 |
(C2xC4xDic5).47C2 = C20:8M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).47C2 | 320,1096 |
(C2xC4xDic5).48C2 = C20.30M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).48C2 | 320,1097 |
(C2xC4xDic5).49C2 = Dic5.12M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).49C2 | 320,1086 |
(C2xC4xDic5).50C2 = C2xC4xC5:C8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 320 | | (C2xC4xDic5).50C2 | 320,1084 |
(C2xC4xDic5).51C2 = C4xC22.F5 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).51C2 | 320,1088 |
(C2xC4xDic5).52C2 = C20.34M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic5 | 160 | | (C2xC4xDic5).52C2 | 320,1092 |
(C2xC4xDic5).53C2 = C42xDic5 | φ: trivial image | 320 | | (C2xC4xDic5).53C2 | 320,557 |
(C2xC4xDic5).54C2 = C2xC8xDic5 | φ: trivial image | 320 | | (C2xC4xDic5).54C2 | 320,725 |