Copied to
clipboard

G = C2×C20.17D4order 320 = 26·5

Direct product of C2 and C20.17D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C20.17D4, C24.37D10, C20.251(C2×D4), (C2×C20).209D4, (C2×D4).229D10, C103(C4.4D4), (C22×D4).11D5, (C2×C20).540C23, (C2×C10).292C24, (C4×Dic5)⋊67C22, C10.140(C22×D4), (C22×C4).378D10, C23.D558C22, (C2×Dic10)⋊67C22, (C22×Dic10)⋊20C2, (D4×C10).269C22, (C23×C10).74C22, C23.134(C22×D5), C22.306(C23×D5), C22.78(D42D5), (C22×C10).228C23, (C22×C20).273C22, (C2×Dic5).292C23, (C22×Dic5).254C22, (D4×C2×C10).8C2, C54(C2×C4.4D4), (C2×C4×Dic5)⋊11C2, C4.23(C2×C5⋊D4), C10.104(C2×C4○D4), (C2×C10).579(C2×D4), C2.68(C2×D42D5), (C2×C23.D5)⋊25C2, C2.13(C22×C5⋊D4), (C2×C4).153(C5⋊D4), (C2×C4).623(C22×D5), C22.109(C2×C5⋊D4), (C2×C10).176(C4○D4), SmallGroup(320,1469)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×C20.17D4
C1C5C10C2×C10C2×Dic5C22×Dic5C2×C4×Dic5 — C2×C20.17D4
C5C2×C10 — C2×C20.17D4
C1C23C22×D4

Generators and relations for C2×C20.17D4
 G = < a,b,c,d | a2=b20=c4=1, d2=b10, ab=ba, ac=ca, ad=da, cbc-1=b9, dbd-1=b-1, dcd-1=b10c-1 >

Subgroups: 958 in 330 conjugacy classes, 127 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C4.4D4, C22×D4, C22×Q8, Dic10, C2×Dic5, C2×Dic5, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C2×C4.4D4, C4×Dic5, C23.D5, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, D4×C10, D4×C10, C23×C10, C2×C4×Dic5, C20.17D4, C2×C23.D5, C22×Dic10, D4×C2×C10, C2×C20.17D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, C24, D10, C4.4D4, C22×D4, C2×C4○D4, C5⋊D4, C22×D5, C2×C4.4D4, D42D5, C2×C5⋊D4, C23×D5, C20.17D4, C2×D42D5, C22×C5⋊D4, C2×C20.17D4

Smallest permutation representation of C2×C20.17D4
On 160 points
Generators in S160
(1 38)(2 39)(3 40)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)(19 36)(20 37)(41 110)(42 111)(43 112)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 120)(52 101)(53 102)(54 103)(55 104)(56 105)(57 106)(58 107)(59 108)(60 109)(61 138)(62 139)(63 140)(64 121)(65 122)(66 123)(67 124)(68 125)(69 126)(70 127)(71 128)(72 129)(73 130)(74 131)(75 132)(76 133)(77 134)(78 135)(79 136)(80 137)(81 155)(82 156)(83 157)(84 158)(85 159)(86 160)(87 141)(88 142)(89 143)(90 144)(91 145)(92 146)(93 147)(94 148)(95 149)(96 150)(97 151)(98 152)(99 153)(100 154)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 151 119 139)(2 160 120 128)(3 149 101 137)(4 158 102 126)(5 147 103 135)(6 156 104 124)(7 145 105 133)(8 154 106 122)(9 143 107 131)(10 152 108 140)(11 141 109 129)(12 150 110 138)(13 159 111 127)(14 148 112 136)(15 157 113 125)(16 146 114 134)(17 155 115 123)(18 144 116 132)(19 153 117 121)(20 142 118 130)(21 84 53 69)(22 93 54 78)(23 82 55 67)(24 91 56 76)(25 100 57 65)(26 89 58 74)(27 98 59 63)(28 87 60 72)(29 96 41 61)(30 85 42 70)(31 94 43 79)(32 83 44 68)(33 92 45 77)(34 81 46 66)(35 90 47 75)(36 99 48 64)(37 88 49 73)(38 97 50 62)(39 86 51 71)(40 95 52 80)
(1 97 11 87)(2 96 12 86)(3 95 13 85)(4 94 14 84)(5 93 15 83)(6 92 16 82)(7 91 17 81)(8 90 18 100)(9 89 19 99)(10 88 20 98)(21 148 31 158)(22 147 32 157)(23 146 33 156)(24 145 34 155)(25 144 35 154)(26 143 36 153)(27 142 37 152)(28 141 38 151)(29 160 39 150)(30 159 40 149)(41 128 51 138)(42 127 52 137)(43 126 53 136)(44 125 54 135)(45 124 55 134)(46 123 56 133)(47 122 57 132)(48 121 58 131)(49 140 59 130)(50 139 60 129)(61 110 71 120)(62 109 72 119)(63 108 73 118)(64 107 74 117)(65 106 75 116)(66 105 76 115)(67 104 77 114)(68 103 78 113)(69 102 79 112)(70 101 80 111)

G:=sub<Sym(160)| (1,38)(2,39)(3,40)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,138)(62,139)(63,140)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(81,155)(82,156)(83,157)(84,158)(85,159)(86,160)(87,141)(88,142)(89,143)(90,144)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,151)(98,152)(99,153)(100,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,151,119,139)(2,160,120,128)(3,149,101,137)(4,158,102,126)(5,147,103,135)(6,156,104,124)(7,145,105,133)(8,154,106,122)(9,143,107,131)(10,152,108,140)(11,141,109,129)(12,150,110,138)(13,159,111,127)(14,148,112,136)(15,157,113,125)(16,146,114,134)(17,155,115,123)(18,144,116,132)(19,153,117,121)(20,142,118,130)(21,84,53,69)(22,93,54,78)(23,82,55,67)(24,91,56,76)(25,100,57,65)(26,89,58,74)(27,98,59,63)(28,87,60,72)(29,96,41,61)(30,85,42,70)(31,94,43,79)(32,83,44,68)(33,92,45,77)(34,81,46,66)(35,90,47,75)(36,99,48,64)(37,88,49,73)(38,97,50,62)(39,86,51,71)(40,95,52,80), (1,97,11,87)(2,96,12,86)(3,95,13,85)(4,94,14,84)(5,93,15,83)(6,92,16,82)(7,91,17,81)(8,90,18,100)(9,89,19,99)(10,88,20,98)(21,148,31,158)(22,147,32,157)(23,146,33,156)(24,145,34,155)(25,144,35,154)(26,143,36,153)(27,142,37,152)(28,141,38,151)(29,160,39,150)(30,159,40,149)(41,128,51,138)(42,127,52,137)(43,126,53,136)(44,125,54,135)(45,124,55,134)(46,123,56,133)(47,122,57,132)(48,121,58,131)(49,140,59,130)(50,139,60,129)(61,110,71,120)(62,109,72,119)(63,108,73,118)(64,107,74,117)(65,106,75,116)(66,105,76,115)(67,104,77,114)(68,103,78,113)(69,102,79,112)(70,101,80,111)>;

G:=Group( (1,38)(2,39)(3,40)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(41,110)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,120)(52,101)(53,102)(54,103)(55,104)(56,105)(57,106)(58,107)(59,108)(60,109)(61,138)(62,139)(63,140)(64,121)(65,122)(66,123)(67,124)(68,125)(69,126)(70,127)(71,128)(72,129)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(81,155)(82,156)(83,157)(84,158)(85,159)(86,160)(87,141)(88,142)(89,143)(90,144)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,151)(98,152)(99,153)(100,154), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,151,119,139)(2,160,120,128)(3,149,101,137)(4,158,102,126)(5,147,103,135)(6,156,104,124)(7,145,105,133)(8,154,106,122)(9,143,107,131)(10,152,108,140)(11,141,109,129)(12,150,110,138)(13,159,111,127)(14,148,112,136)(15,157,113,125)(16,146,114,134)(17,155,115,123)(18,144,116,132)(19,153,117,121)(20,142,118,130)(21,84,53,69)(22,93,54,78)(23,82,55,67)(24,91,56,76)(25,100,57,65)(26,89,58,74)(27,98,59,63)(28,87,60,72)(29,96,41,61)(30,85,42,70)(31,94,43,79)(32,83,44,68)(33,92,45,77)(34,81,46,66)(35,90,47,75)(36,99,48,64)(37,88,49,73)(38,97,50,62)(39,86,51,71)(40,95,52,80), (1,97,11,87)(2,96,12,86)(3,95,13,85)(4,94,14,84)(5,93,15,83)(6,92,16,82)(7,91,17,81)(8,90,18,100)(9,89,19,99)(10,88,20,98)(21,148,31,158)(22,147,32,157)(23,146,33,156)(24,145,34,155)(25,144,35,154)(26,143,36,153)(27,142,37,152)(28,141,38,151)(29,160,39,150)(30,159,40,149)(41,128,51,138)(42,127,52,137)(43,126,53,136)(44,125,54,135)(45,124,55,134)(46,123,56,133)(47,122,57,132)(48,121,58,131)(49,140,59,130)(50,139,60,129)(61,110,71,120)(62,109,72,119)(63,108,73,118)(64,107,74,117)(65,106,75,116)(66,105,76,115)(67,104,77,114)(68,103,78,113)(69,102,79,112)(70,101,80,111) );

G=PermutationGroup([[(1,38),(2,39),(3,40),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35),(19,36),(20,37),(41,110),(42,111),(43,112),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,120),(52,101),(53,102),(54,103),(55,104),(56,105),(57,106),(58,107),(59,108),(60,109),(61,138),(62,139),(63,140),(64,121),(65,122),(66,123),(67,124),(68,125),(69,126),(70,127),(71,128),(72,129),(73,130),(74,131),(75,132),(76,133),(77,134),(78,135),(79,136),(80,137),(81,155),(82,156),(83,157),(84,158),(85,159),(86,160),(87,141),(88,142),(89,143),(90,144),(91,145),(92,146),(93,147),(94,148),(95,149),(96,150),(97,151),(98,152),(99,153),(100,154)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,151,119,139),(2,160,120,128),(3,149,101,137),(4,158,102,126),(5,147,103,135),(6,156,104,124),(7,145,105,133),(8,154,106,122),(9,143,107,131),(10,152,108,140),(11,141,109,129),(12,150,110,138),(13,159,111,127),(14,148,112,136),(15,157,113,125),(16,146,114,134),(17,155,115,123),(18,144,116,132),(19,153,117,121),(20,142,118,130),(21,84,53,69),(22,93,54,78),(23,82,55,67),(24,91,56,76),(25,100,57,65),(26,89,58,74),(27,98,59,63),(28,87,60,72),(29,96,41,61),(30,85,42,70),(31,94,43,79),(32,83,44,68),(33,92,45,77),(34,81,46,66),(35,90,47,75),(36,99,48,64),(37,88,49,73),(38,97,50,62),(39,86,51,71),(40,95,52,80)], [(1,97,11,87),(2,96,12,86),(3,95,13,85),(4,94,14,84),(5,93,15,83),(6,92,16,82),(7,91,17,81),(8,90,18,100),(9,89,19,99),(10,88,20,98),(21,148,31,158),(22,147,32,157),(23,146,33,156),(24,145,34,155),(25,144,35,154),(26,143,36,153),(27,142,37,152),(28,141,38,151),(29,160,39,150),(30,159,40,149),(41,128,51,138),(42,127,52,137),(43,126,53,136),(44,125,54,135),(45,124,55,134),(46,123,56,133),(47,122,57,132),(48,121,58,131),(49,140,59,130),(50,139,60,129),(61,110,71,120),(62,109,72,119),(63,108,73,118),(64,107,74,117),(65,106,75,116),(66,105,76,115),(67,104,77,114),(68,103,78,113),(69,102,79,112),(70,101,80,111)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4L4M4N4O4P5A5B10A···10N10O···10AD20A···20H
order12···2222244444···444445510···1010···1020···20
size11···14444222210···1020202020222···24···44···4

68 irreducible representations

dim11111122222224
type+++++++++++-
imageC1C2C2C2C2C2D4D5C4○D4D10D10D10C5⋊D4D42D5
kernelC2×C20.17D4C2×C4×Dic5C20.17D4C2×C23.D5C22×Dic10D4×C2×C10C2×C20C22×D4C2×C10C22×C4C2×D4C24C2×C4C22
# reps118411428284168

Matrix representation of C2×C20.17D4 in GL5(𝔽41)

400000
01000
00100
000400
000040
,
400000
00100
040000
000230
0001825
,
10000
09000
00900
0002339
0001918
,
10000
09000
003200
0002339
0001818

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,1,0,0,0,0,0,0,23,18,0,0,0,0,25],[1,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,23,19,0,0,0,39,18],[1,0,0,0,0,0,9,0,0,0,0,0,32,0,0,0,0,0,23,18,0,0,0,39,18] >;

C2×C20.17D4 in GAP, Magma, Sage, TeX

C_2\times C_{20}._{17}D_4
% in TeX

G:=Group("C2xC20.17D4");
// GroupNames label

G:=SmallGroup(320,1469);
// by ID

G=gap.SmallGroup(320,1469);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,100,1571,185,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^4=1,d^2=b^10,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^9,d*b*d^-1=b^-1,d*c*d^-1=b^10*c^-1>;
// generators/relations

׿
×
𝔽