Copied to
clipboard

G = C2×Dic54D4order 320 = 26·5

Direct product of C2 and Dic54D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×Dic54D4, C24.53D10, C103(C4×D4), C234(C4×D5), Dic59(C2×D4), C22⋊C450D10, (C2×Dic5)⋊23D4, D103(C22×C4), C10.29(C23×C4), (C2×C10).29C24, (C23×Dic5)⋊3C2, Dic52(C22×C4), C10.34(C22×D4), C22.124(D4×D5), (C2×C20).570C23, (C4×Dic5)⋊73C22, (C22×C4).312D10, D10⋊C456C22, C22.18(C23×D5), C10.D457C22, (C23×C10).55C22, C23.319(C22×D5), C22.66(D42D5), (C22×C20).351C22, (C22×C10).121C23, (C2×Dic5).370C23, (C22×Dic5)⋊41C22, (C23×D5).106C22, (C22×D5).159C23, C53(C2×C4×D4), C2.2(C2×D4×D5), C222(C2×C4×D5), C5⋊D49(C2×C4), (C2×C5⋊D4)⋊13C4, (C2×C4×Dic5)⋊30C2, (D5×C22×C4)⋊16C2, (C2×C4×D5)⋊64C22, C2.10(D5×C22×C4), (C2×C10)⋊6(C22×C4), (C2×C22⋊C4)⋊19D5, C10.67(C2×C4○D4), C2.2(C2×D42D5), (C10×C22⋊C4)⋊25C2, (C22×C10)⋊16(C2×C4), (C2×Dic5)⋊25(C2×C4), (C2×C10).380(C2×D4), (C22×D5)⋊15(C2×C4), (C2×D10⋊C4)⋊30C2, (C22×C5⋊D4).8C2, (C2×C10.D4)⋊35C2, (C5×C22⋊C4)⋊60C22, (C2×C4).256(C22×D5), (C2×C5⋊D4).95C22, (C2×C10).167(C4○D4), SmallGroup(320,1157)

Series: Derived Chief Lower central Upper central

C1C10 — C2×Dic54D4
C1C5C10C2×C10C22×D5C23×D5C22×C5⋊D4 — C2×Dic54D4
C5C10 — C2×Dic54D4
C1C23C2×C22⋊C4

Generators and relations for C2×Dic54D4
 G = < a,b,c,d,e | a2=b10=d4=e2=1, c2=b5, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=dbd-1=b-1, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1358 in 426 conjugacy classes, 175 normal (31 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, D5, C10, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C24, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C23×C4, C22×D4, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C22×C10, C22×C10, C2×C4×D4, C4×Dic5, C10.D4, D10⋊C4, C5×C22⋊C4, C2×C4×D5, C2×C4×D5, C22×Dic5, C22×Dic5, C22×Dic5, C2×C5⋊D4, C22×C20, C23×D5, C23×C10, Dic54D4, C2×C4×Dic5, C2×C10.D4, C2×D10⋊C4, C10×C22⋊C4, D5×C22×C4, C23×Dic5, C22×C5⋊D4, C2×Dic54D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, C24, D10, C4×D4, C23×C4, C22×D4, C2×C4○D4, C4×D5, C22×D5, C2×C4×D4, C2×C4×D5, D4×D5, D42D5, C23×D5, Dic54D4, D5×C22×C4, C2×D4×D5, C2×D42D5, C2×Dic54D4

Smallest permutation representation of C2×Dic54D4
On 160 points
Generators in S160
(1 107)(2 108)(3 109)(4 110)(5 101)(6 102)(7 103)(8 104)(9 105)(10 106)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 71)(19 72)(20 73)(21 100)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 122)(32 123)(33 124)(34 125)(35 126)(36 127)(37 128)(38 129)(39 130)(40 121)(41 120)(42 111)(43 112)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 142)(52 143)(53 144)(54 145)(55 146)(56 147)(57 148)(58 149)(59 150)(60 141)(61 140)(62 131)(63 132)(64 133)(65 134)(66 135)(67 136)(68 137)(69 138)(70 139)(81 160)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)(89 158)(90 159)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 42 6 47)(2 41 7 46)(3 50 8 45)(4 49 9 44)(5 48 10 43)(11 138 16 133)(12 137 17 132)(13 136 18 131)(14 135 19 140)(15 134 20 139)(21 37 26 32)(22 36 27 31)(23 35 28 40)(24 34 29 39)(25 33 30 38)(51 87 56 82)(52 86 57 81)(53 85 58 90)(54 84 59 89)(55 83 60 88)(61 77 66 72)(62 76 67 71)(63 75 68 80)(64 74 69 79)(65 73 70 78)(91 127 96 122)(92 126 97 121)(93 125 98 130)(94 124 99 129)(95 123 100 128)(101 117 106 112)(102 116 107 111)(103 115 108 120)(104 114 109 119)(105 113 110 118)(141 157 146 152)(142 156 147 151)(143 155 148 160)(144 154 149 159)(145 153 150 158)
(1 136 27 147)(2 135 28 146)(3 134 29 145)(4 133 30 144)(5 132 21 143)(6 131 22 142)(7 140 23 141)(8 139 24 150)(9 138 25 149)(10 137 26 148)(11 38 154 49)(12 37 155 48)(13 36 156 47)(14 35 157 46)(15 34 158 45)(16 33 159 44)(17 32 160 43)(18 31 151 42)(19 40 152 41)(20 39 153 50)(51 102 62 91)(52 101 63 100)(53 110 64 99)(54 109 65 98)(55 108 66 97)(56 107 67 96)(57 106 68 95)(58 105 69 94)(59 104 70 93)(60 103 61 92)(71 122 82 111)(72 121 83 120)(73 130 84 119)(74 129 85 118)(75 128 86 117)(76 127 87 116)(77 126 88 115)(78 125 89 114)(79 124 90 113)(80 123 81 112)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 51)(7 52)(8 53)(9 54)(10 55)(11 125)(12 126)(13 127)(14 128)(15 129)(16 130)(17 121)(18 122)(19 123)(20 124)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 85)(46 86)(47 87)(48 88)(49 89)(50 90)(91 131)(92 132)(93 133)(94 134)(95 135)(96 136)(97 137)(98 138)(99 139)(100 140)(101 141)(102 142)(103 143)(104 144)(105 145)(106 146)(107 147)(108 148)(109 149)(110 150)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)

G:=sub<Sym(160)| (1,107)(2,108)(3,109)(4,110)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,71)(19,72)(20,73)(21,100)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,121)(41,120)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(81,160)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,42,6,47)(2,41,7,46)(3,50,8,45)(4,49,9,44)(5,48,10,43)(11,138,16,133)(12,137,17,132)(13,136,18,131)(14,135,19,140)(15,134,20,139)(21,37,26,32)(22,36,27,31)(23,35,28,40)(24,34,29,39)(25,33,30,38)(51,87,56,82)(52,86,57,81)(53,85,58,90)(54,84,59,89)(55,83,60,88)(61,77,66,72)(62,76,67,71)(63,75,68,80)(64,74,69,79)(65,73,70,78)(91,127,96,122)(92,126,97,121)(93,125,98,130)(94,124,99,129)(95,123,100,128)(101,117,106,112)(102,116,107,111)(103,115,108,120)(104,114,109,119)(105,113,110,118)(141,157,146,152)(142,156,147,151)(143,155,148,160)(144,154,149,159)(145,153,150,158), (1,136,27,147)(2,135,28,146)(3,134,29,145)(4,133,30,144)(5,132,21,143)(6,131,22,142)(7,140,23,141)(8,139,24,150)(9,138,25,149)(10,137,26,148)(11,38,154,49)(12,37,155,48)(13,36,156,47)(14,35,157,46)(15,34,158,45)(16,33,159,44)(17,32,160,43)(18,31,151,42)(19,40,152,41)(20,39,153,50)(51,102,62,91)(52,101,63,100)(53,110,64,99)(54,109,65,98)(55,108,66,97)(56,107,67,96)(57,106,68,95)(58,105,69,94)(59,104,70,93)(60,103,61,92)(71,122,82,111)(72,121,83,120)(73,130,84,119)(74,129,85,118)(75,128,86,117)(76,127,87,116)(77,126,88,115)(78,125,89,114)(79,124,90,113)(80,123,81,112), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,121)(18,122)(19,123)(20,124)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160)>;

G:=Group( (1,107)(2,108)(3,109)(4,110)(5,101)(6,102)(7,103)(8,104)(9,105)(10,106)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,71)(19,72)(20,73)(21,100)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,121)(41,120)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(81,160)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,42,6,47)(2,41,7,46)(3,50,8,45)(4,49,9,44)(5,48,10,43)(11,138,16,133)(12,137,17,132)(13,136,18,131)(14,135,19,140)(15,134,20,139)(21,37,26,32)(22,36,27,31)(23,35,28,40)(24,34,29,39)(25,33,30,38)(51,87,56,82)(52,86,57,81)(53,85,58,90)(54,84,59,89)(55,83,60,88)(61,77,66,72)(62,76,67,71)(63,75,68,80)(64,74,69,79)(65,73,70,78)(91,127,96,122)(92,126,97,121)(93,125,98,130)(94,124,99,129)(95,123,100,128)(101,117,106,112)(102,116,107,111)(103,115,108,120)(104,114,109,119)(105,113,110,118)(141,157,146,152)(142,156,147,151)(143,155,148,160)(144,154,149,159)(145,153,150,158), (1,136,27,147)(2,135,28,146)(3,134,29,145)(4,133,30,144)(5,132,21,143)(6,131,22,142)(7,140,23,141)(8,139,24,150)(9,138,25,149)(10,137,26,148)(11,38,154,49)(12,37,155,48)(13,36,156,47)(14,35,157,46)(15,34,158,45)(16,33,159,44)(17,32,160,43)(18,31,151,42)(19,40,152,41)(20,39,153,50)(51,102,62,91)(52,101,63,100)(53,110,64,99)(54,109,65,98)(55,108,66,97)(56,107,67,96)(57,106,68,95)(58,105,69,94)(59,104,70,93)(60,103,61,92)(71,122,82,111)(72,121,83,120)(73,130,84,119)(74,129,85,118)(75,128,86,117)(76,127,87,116)(77,126,88,115)(78,125,89,114)(79,124,90,113)(80,123,81,112), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,125)(12,126)(13,127)(14,128)(15,129)(16,130)(17,121)(18,122)(19,123)(20,124)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,85)(46,86)(47,87)(48,88)(49,89)(50,90)(91,131)(92,132)(93,133)(94,134)(95,135)(96,136)(97,137)(98,138)(99,139)(100,140)(101,141)(102,142)(103,143)(104,144)(105,145)(106,146)(107,147)(108,148)(109,149)(110,150)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160) );

G=PermutationGroup([[(1,107),(2,108),(3,109),(4,110),(5,101),(6,102),(7,103),(8,104),(9,105),(10,106),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,71),(19,72),(20,73),(21,100),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,122),(32,123),(33,124),(34,125),(35,126),(36,127),(37,128),(38,129),(39,130),(40,121),(41,120),(42,111),(43,112),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,142),(52,143),(53,144),(54,145),(55,146),(56,147),(57,148),(58,149),(59,150),(60,141),(61,140),(62,131),(63,132),(64,133),(65,134),(66,135),(67,136),(68,137),(69,138),(70,139),(81,160),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157),(89,158),(90,159)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,42,6,47),(2,41,7,46),(3,50,8,45),(4,49,9,44),(5,48,10,43),(11,138,16,133),(12,137,17,132),(13,136,18,131),(14,135,19,140),(15,134,20,139),(21,37,26,32),(22,36,27,31),(23,35,28,40),(24,34,29,39),(25,33,30,38),(51,87,56,82),(52,86,57,81),(53,85,58,90),(54,84,59,89),(55,83,60,88),(61,77,66,72),(62,76,67,71),(63,75,68,80),(64,74,69,79),(65,73,70,78),(91,127,96,122),(92,126,97,121),(93,125,98,130),(94,124,99,129),(95,123,100,128),(101,117,106,112),(102,116,107,111),(103,115,108,120),(104,114,109,119),(105,113,110,118),(141,157,146,152),(142,156,147,151),(143,155,148,160),(144,154,149,159),(145,153,150,158)], [(1,136,27,147),(2,135,28,146),(3,134,29,145),(4,133,30,144),(5,132,21,143),(6,131,22,142),(7,140,23,141),(8,139,24,150),(9,138,25,149),(10,137,26,148),(11,38,154,49),(12,37,155,48),(13,36,156,47),(14,35,157,46),(15,34,158,45),(16,33,159,44),(17,32,160,43),(18,31,151,42),(19,40,152,41),(20,39,153,50),(51,102,62,91),(52,101,63,100),(53,110,64,99),(54,109,65,98),(55,108,66,97),(56,107,67,96),(57,106,68,95),(58,105,69,94),(59,104,70,93),(60,103,61,92),(71,122,82,111),(72,121,83,120),(73,130,84,119),(74,129,85,118),(75,128,86,117),(76,127,87,116),(77,126,88,115),(78,125,89,114),(79,124,90,113),(80,123,81,112)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,51),(7,52),(8,53),(9,54),(10,55),(11,125),(12,126),(13,127),(14,128),(15,129),(16,130),(17,121),(18,122),(19,123),(20,124),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,85),(46,86),(47,87),(48,88),(49,89),(50,90),(91,131),(92,132),(93,133),(94,134),(95,135),(96,136),(97,137),(98,138),(99,139),(100,140),(101,141),(102,142),(103,143),(104,144),(105,145),(106,146),(107,147),(108,148),(109,149),(110,150),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)]])

80 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M2N2O4A···4H4I···4P4Q···4X5A5B10A···10N10O···10V20A···20P
order12···2222222224···44···44···45510···1010···1020···20
size11···12222101010102···25···510···10222···24···44···4

80 irreducible representations

dim1111111111222222244
type+++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C4D4D5C4○D4D10D10D10C4×D5D4×D5D42D5
kernelC2×Dic54D4Dic54D4C2×C4×Dic5C2×C10.D4C2×D10⋊C4C10×C22⋊C4D5×C22×C4C23×Dic5C22×C5⋊D4C2×C5⋊D4C2×Dic5C2×C22⋊C4C2×C10C22⋊C4C22×C4C24C23C22C22
# reps181111111164248421644

Matrix representation of C2×Dic54D4 in GL6(𝔽41)

4000000
0400000
001000
000100
000010
000001
,
7400000
8400000
0034100
0033100
000010
000001
,
3410000
3470000
00223200
00221900
000010
000001
,
7400000
7340000
0034100
0034700
00004039
000011
,
100000
010000
001000
000100
00004039
000001

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,8,0,0,0,0,40,40,0,0,0,0,0,0,34,33,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[34,34,0,0,0,0,1,7,0,0,0,0,0,0,22,22,0,0,0,0,32,19,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[7,7,0,0,0,0,40,34,0,0,0,0,0,0,34,34,0,0,0,0,1,7,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,39,1] >;

C2×Dic54D4 in GAP, Magma, Sage, TeX

C_2\times {\rm Dic}_5\rtimes_4D_4
% in TeX

G:=Group("C2xDic5:4D4");
// GroupNames label

G:=SmallGroup(320,1157);
// by ID

G=gap.SmallGroup(320,1157);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,297,80,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=d^4=e^2=1,c^2=b^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽