Copied to
clipboard

G = C2×D208C4order 320 = 26·5

Direct product of C2 and D208C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D208C4, C104(C4×D4), C4⋊C452D10, (C2×D20)⋊29C4, D2032(C2×C4), C206(C22×C4), (C2×Dic5)⋊24D4, Dic510(C2×D4), D104(C22×C4), C10.34(C23×C4), (C2×C10).47C24, C22.131(D4×D5), C10.41(C22×D4), (C2×C20).579C23, (C4×Dic5)⋊64C22, (C22×D20).17C2, (C22×C4).317D10, D10⋊C459C22, C22.23(C23×D5), (C2×D20).260C22, C23.326(C22×D5), (C22×C20).215C22, (C22×C10).396C23, C22.34(Q82D5), (C2×Dic5).372C23, (C23×D5).110C22, (C22×D5).164C23, (C22×Dic5).234C22, C54(C2×C4×D4), C42(C2×C4×D5), C2.4(C2×D4×D5), (C2×C4)⋊9(C4×D5), (C10×C4⋊C4)⋊9C2, (C2×C4⋊C4)⋊26D5, (C2×C4×Dic5)⋊5C2, (C2×C20)⋊21(C2×C4), (C2×C4×D5)⋊67C22, (D5×C22×C4)⋊19C2, (C5×C4⋊C4)⋊44C22, C2.15(D5×C22×C4), C22.73(C2×C4×D5), C2.2(C2×Q82D5), C10.108(C2×C4○D4), (C2×C10).387(C2×D4), (C22×D5)⋊16(C2×C4), (C2×D10⋊C4)⋊32C2, (C2×C4).266(C22×D5), (C2×C10).196(C4○D4), (C2×C10).253(C22×C4), SmallGroup(320,1175)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D208C4
C1C5C10C2×C10C22×D5C23×D5C22×D20 — C2×D208C4
C5C10 — C2×D208C4
C1C23C2×C4⋊C4

Generators and relations for C2×D208C4
 G = < a,b,c,d | a2=b20=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b11, dcd-1=b10c >

Subgroups: 1518 in 426 conjugacy classes, 175 normal (21 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C23×C4, C22×D4, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, C2×C4×D4, C4×Dic5, D10⋊C4, C5×C4⋊C4, C2×C4×D5, C2×C4×D5, C2×D20, C22×Dic5, C22×C20, C22×C20, C23×D5, D208C4, C2×C4×Dic5, C2×D10⋊C4, C10×C4⋊C4, D5×C22×C4, C22×D20, C2×D208C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, C24, D10, C4×D4, C23×C4, C22×D4, C2×C4○D4, C4×D5, C22×D5, C2×C4×D4, C2×C4×D5, D4×D5, Q82D5, C23×D5, D208C4, D5×C22×C4, C2×D4×D5, C2×Q82D5, C2×D208C4

Smallest permutation representation of C2×D208C4
On 160 points
Generators in S160
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 21)(20 22)(41 131)(42 132)(43 133)(44 134)(45 135)(46 136)(47 137)(48 138)(49 139)(50 140)(51 121)(52 122)(53 123)(54 124)(55 125)(56 126)(57 127)(58 128)(59 129)(60 130)(61 104)(62 105)(63 106)(64 107)(65 108)(66 109)(67 110)(68 111)(69 112)(70 113)(71 114)(72 115)(73 116)(74 117)(75 118)(76 119)(77 120)(78 101)(79 102)(80 103)(81 153)(82 154)(83 155)(84 156)(85 157)(86 158)(87 159)(88 160)(89 141)(90 142)(91 143)(92 144)(93 145)(94 146)(95 147)(96 148)(97 149)(98 150)(99 151)(100 152)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(41 45)(42 44)(46 60)(47 59)(48 58)(49 57)(50 56)(51 55)(52 54)(61 73)(62 72)(63 71)(64 70)(65 69)(66 68)(74 80)(75 79)(76 78)(81 87)(82 86)(83 85)(88 100)(89 99)(90 98)(91 97)(92 96)(93 95)(101 119)(102 118)(103 117)(104 116)(105 115)(106 114)(107 113)(108 112)(109 111)(121 125)(122 124)(126 140)(127 139)(128 138)(129 137)(130 136)(131 135)(132 134)(141 151)(142 150)(143 149)(144 148)(145 147)(152 160)(153 159)(154 158)(155 157)
(1 82 126 118)(2 93 127 109)(3 84 128 120)(4 95 129 111)(5 86 130 102)(6 97 131 113)(7 88 132 104)(8 99 133 115)(9 90 134 106)(10 81 135 117)(11 92 136 108)(12 83 137 119)(13 94 138 110)(14 85 139 101)(15 96 140 112)(16 87 121 103)(17 98 122 114)(18 89 123 105)(19 100 124 116)(20 91 125 107)(21 152 54 73)(22 143 55 64)(23 154 56 75)(24 145 57 66)(25 156 58 77)(26 147 59 68)(27 158 60 79)(28 149 41 70)(29 160 42 61)(30 151 43 72)(31 142 44 63)(32 153 45 74)(33 144 46 65)(34 155 47 76)(35 146 48 67)(36 157 49 78)(37 148 50 69)(38 159 51 80)(39 150 52 71)(40 141 53 62)

G:=sub<Sym(160)| (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,21)(20,22)(41,131)(42,132)(43,133)(44,134)(45,135)(46,136)(47,137)(48,138)(49,139)(50,140)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(57,127)(58,128)(59,129)(60,130)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,101)(79,102)(80,103)(81,153)(82,154)(83,155)(84,156)(85,157)(86,158)(87,159)(88,160)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,151)(100,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,45)(42,44)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78)(81,87)(82,86)(83,85)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)(121,125)(122,124)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(141,151)(142,150)(143,149)(144,148)(145,147)(152,160)(153,159)(154,158)(155,157), (1,82,126,118)(2,93,127,109)(3,84,128,120)(4,95,129,111)(5,86,130,102)(6,97,131,113)(7,88,132,104)(8,99,133,115)(9,90,134,106)(10,81,135,117)(11,92,136,108)(12,83,137,119)(13,94,138,110)(14,85,139,101)(15,96,140,112)(16,87,121,103)(17,98,122,114)(18,89,123,105)(19,100,124,116)(20,91,125,107)(21,152,54,73)(22,143,55,64)(23,154,56,75)(24,145,57,66)(25,156,58,77)(26,147,59,68)(27,158,60,79)(28,149,41,70)(29,160,42,61)(30,151,43,72)(31,142,44,63)(32,153,45,74)(33,144,46,65)(34,155,47,76)(35,146,48,67)(36,157,49,78)(37,148,50,69)(38,159,51,80)(39,150,52,71)(40,141,53,62)>;

G:=Group( (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,21)(20,22)(41,131)(42,132)(43,133)(44,134)(45,135)(46,136)(47,137)(48,138)(49,139)(50,140)(51,121)(52,122)(53,123)(54,124)(55,125)(56,126)(57,127)(58,128)(59,129)(60,130)(61,104)(62,105)(63,106)(64,107)(65,108)(66,109)(67,110)(68,111)(69,112)(70,113)(71,114)(72,115)(73,116)(74,117)(75,118)(76,119)(77,120)(78,101)(79,102)(80,103)(81,153)(82,154)(83,155)(84,156)(85,157)(86,158)(87,159)(88,160)(89,141)(90,142)(91,143)(92,144)(93,145)(94,146)(95,147)(96,148)(97,149)(98,150)(99,151)(100,152), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(41,45)(42,44)(46,60)(47,59)(48,58)(49,57)(50,56)(51,55)(52,54)(61,73)(62,72)(63,71)(64,70)(65,69)(66,68)(74,80)(75,79)(76,78)(81,87)(82,86)(83,85)(88,100)(89,99)(90,98)(91,97)(92,96)(93,95)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)(121,125)(122,124)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(141,151)(142,150)(143,149)(144,148)(145,147)(152,160)(153,159)(154,158)(155,157), (1,82,126,118)(2,93,127,109)(3,84,128,120)(4,95,129,111)(5,86,130,102)(6,97,131,113)(7,88,132,104)(8,99,133,115)(9,90,134,106)(10,81,135,117)(11,92,136,108)(12,83,137,119)(13,94,138,110)(14,85,139,101)(15,96,140,112)(16,87,121,103)(17,98,122,114)(18,89,123,105)(19,100,124,116)(20,91,125,107)(21,152,54,73)(22,143,55,64)(23,154,56,75)(24,145,57,66)(25,156,58,77)(26,147,59,68)(27,158,60,79)(28,149,41,70)(29,160,42,61)(30,151,43,72)(31,142,44,63)(32,153,45,74)(33,144,46,65)(34,155,47,76)(35,146,48,67)(36,157,49,78)(37,148,50,69)(38,159,51,80)(39,150,52,71)(40,141,53,62) );

G=PermutationGroup([[(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,21),(20,22),(41,131),(42,132),(43,133),(44,134),(45,135),(46,136),(47,137),(48,138),(49,139),(50,140),(51,121),(52,122),(53,123),(54,124),(55,125),(56,126),(57,127),(58,128),(59,129),(60,130),(61,104),(62,105),(63,106),(64,107),(65,108),(66,109),(67,110),(68,111),(69,112),(70,113),(71,114),(72,115),(73,116),(74,117),(75,118),(76,119),(77,120),(78,101),(79,102),(80,103),(81,153),(82,154),(83,155),(84,156),(85,157),(86,158),(87,159),(88,160),(89,141),(90,142),(91,143),(92,144),(93,145),(94,146),(95,147),(96,148),(97,149),(98,150),(99,151),(100,152)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(41,45),(42,44),(46,60),(47,59),(48,58),(49,57),(50,56),(51,55),(52,54),(61,73),(62,72),(63,71),(64,70),(65,69),(66,68),(74,80),(75,79),(76,78),(81,87),(82,86),(83,85),(88,100),(89,99),(90,98),(91,97),(92,96),(93,95),(101,119),(102,118),(103,117),(104,116),(105,115),(106,114),(107,113),(108,112),(109,111),(121,125),(122,124),(126,140),(127,139),(128,138),(129,137),(130,136),(131,135),(132,134),(141,151),(142,150),(143,149),(144,148),(145,147),(152,160),(153,159),(154,158),(155,157)], [(1,82,126,118),(2,93,127,109),(3,84,128,120),(4,95,129,111),(5,86,130,102),(6,97,131,113),(7,88,132,104),(8,99,133,115),(9,90,134,106),(10,81,135,117),(11,92,136,108),(12,83,137,119),(13,94,138,110),(14,85,139,101),(15,96,140,112),(16,87,121,103),(17,98,122,114),(18,89,123,105),(19,100,124,116),(20,91,125,107),(21,152,54,73),(22,143,55,64),(23,154,56,75),(24,145,57,66),(25,156,58,77),(26,147,59,68),(27,158,60,79),(28,149,41,70),(29,160,42,61),(30,151,43,72),(31,142,44,63),(32,153,45,74),(33,144,46,65),(34,155,47,76),(35,146,48,67),(36,157,49,78),(37,148,50,69),(38,159,51,80),(39,150,52,71),(40,141,53,62)]])

80 conjugacy classes

class 1 2A···2G2H···2O4A···4L4M···4T4U4V4W4X5A5B10A···10N20A···20X
order12···22···24···44···444445510···1020···20
size11···110···102···25···510101010222···24···4

80 irreducible representations

dim1111111122222244
type+++++++++++++
imageC1C2C2C2C2C2C2C4D4D5C4○D4D10D10C4×D5D4×D5Q82D5
kernelC2×D208C4D208C4C2×C4×Dic5C2×D10⋊C4C10×C4⋊C4D5×C22×C4C22×D20C2×D20C2×Dic5C2×C4⋊C4C2×C10C4⋊C4C22×C4C2×C4C22C22
# reps181212116424861644

Matrix representation of C2×D208C4 in GL5(𝔽41)

400000
040000
004000
00010
00001
,
10000
0344000
01000
00009
00090
,
400000
0344000
07700
000400
00001
,
10000
032000
003200
000040
00010

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,34,1,0,0,0,40,0,0,0,0,0,0,0,9,0,0,0,9,0],[40,0,0,0,0,0,34,7,0,0,0,40,7,0,0,0,0,0,40,0,0,0,0,0,1],[1,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,40,0] >;

C2×D208C4 in GAP, Magma, Sage, TeX

C_2\times D_{20}\rtimes_8C_4
% in TeX

G:=Group("C2xD20:8C4");
// GroupNames label

G:=SmallGroup(320,1175);
// by ID

G=gap.SmallGroup(320,1175);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,758,184,297,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^20=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^11,d*c*d^-1=b^10*c>;
// generators/relations

׿
×
𝔽