Extensions 1→N→G→Q→1 with N=C2×C4○D4 and Q=D5

Direct product G=N×Q with N=C2×C4○D4 and Q=D5
dρLabelID
C2×D5×C4○D480C2xD5xC4oD4320,1618

Semidirect products G=N:Q with N=C2×C4○D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×C4○D4)⋊1D5 = (C5×D4)⋊14D4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4):1D5320,865
(C2×C4○D4)⋊2D5 = C2×D4⋊D10φ: D5/C5C2 ⊆ Out C2×C4○D480(C2xC4oD4):2D5320,1492
(C2×C4○D4)⋊3D5 = C2×D4.8D10φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4):3D5320,1493
(C2×C4○D4)⋊4D5 = C20.C24φ: D5/C5C2 ⊆ Out C2×C4○D4804(C2xC4oD4):4D5320,1494
(C2×C4○D4)⋊5D5 = C10.1042- 1+4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4):5D5320,1496
(C2×C4○D4)⋊6D5 = (C2×C20)⋊15D4φ: D5/C5C2 ⊆ Out C2×C4○D480(C2xC4oD4):6D5320,1500
(C2×C4○D4)⋊7D5 = C10.1452+ 1+4φ: D5/C5C2 ⊆ Out C2×C4○D480(C2xC4oD4):7D5320,1501
(C2×C4○D4)⋊8D5 = C10.1462+ 1+4φ: D5/C5C2 ⊆ Out C2×C4○D480(C2xC4oD4):8D5320,1502
(C2×C4○D4)⋊9D5 = C10.1072- 1+4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4):9D5320,1503
(C2×C4○D4)⋊10D5 = (C2×C20)⋊17D4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4):10D5320,1504
(C2×C4○D4)⋊11D5 = C10.1472+ 1+4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4):11D5320,1505
(C2×C4○D4)⋊12D5 = C10.1482+ 1+4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4):12D5320,1506
(C2×C4○D4)⋊13D5 = C2×D48D10φ: D5/C5C2 ⊆ Out C2×C4○D480(C2xC4oD4):13D5320,1619
(C2×C4○D4)⋊14D5 = C2×D4.10D10φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4):14D5320,1620
(C2×C4○D4)⋊15D5 = C10.C25φ: D5/C5C2 ⊆ Out C2×C4○D4804(C2xC4oD4):15D5320,1621

Non-split extensions G=N.Q with N=C2×C4○D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C2×C4○D4).1D5 = C4○D4⋊Dic5φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4).1D5320,859
(C2×C4○D4).2D5 = C20.(C2×D4)φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4).2D5320,860
(C2×C4○D4).3D5 = (D4×C10).24C4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4).3D5320,861
(C2×C4○D4).4D5 = C2×D42Dic5φ: D5/C5C2 ⊆ Out C2×C4○D480(C2xC4oD4).4D5320,862
(C2×C4○D4).5D5 = (D4×C10)⋊21C4φ: D5/C5C2 ⊆ Out C2×C4○D4804(C2xC4oD4).5D5320,863
(C2×C4○D4).6D5 = (D4×C10).29C4φ: D5/C5C2 ⊆ Out C2×C4○D4804(C2xC4oD4).6D5320,864
(C2×C4○D4).7D5 = (C5×D4).32D4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4).7D5320,866
(C2×C4○D4).8D5 = (D4×C10)⋊22C4φ: D5/C5C2 ⊆ Out C2×C4○D4804(C2xC4oD4).8D5320,867
(C2×C4○D4).9D5 = C20.76C24φ: D5/C5C2 ⊆ Out C2×C4○D4804(C2xC4oD4).9D5320,1491
(C2×C4○D4).10D5 = C2×D4.9D10φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4).10D5320,1495
(C2×C4○D4).11D5 = C10.1052- 1+4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4).11D5320,1497
(C2×C4○D4).12D5 = C10.1062- 1+4φ: D5/C5C2 ⊆ Out C2×C4○D4160(C2xC4oD4).12D5320,1499
(C2×C4○D4).13D5 = C2×D4.Dic5φ: trivial image160(C2xC4oD4).13D5320,1490
(C2×C4○D4).14D5 = C4○D4×Dic5φ: trivial image160(C2xC4oD4).14D5320,1498

׿
×
𝔽