metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.1052- 1+4, C20.429(C2×D4), (C2×C20).220D4, (C2×D4).235D10, (C2×Q8).193D10, Dic5⋊Q8⋊32C2, C20.17D4⋊30C2, C20.48D4⋊48C2, (C2×C20).650C23, (C2×C10).311C24, (C22×C4).285D10, C10.163(C22×D4), (C22×Dic10)⋊22C2, (D4×C10).314C22, C4⋊Dic5.320C22, (Q8×C10).240C22, C22.322(C23×D5), C23.208(C22×D5), C23.18D10⋊32C2, C23.21D10⋊35C2, (C22×C20).320C22, (C22×C10).237C23, C5⋊7(C23.38C23), (C2×Dic5).161C23, (C4×Dic5).182C22, C10.D4.92C22, C23.D5.133C22, C2.69(D4.10D10), (C2×Dic10).318C22, (C22×Dic5).166C22, C4.32(C2×C5⋊D4), (C2×C4○D4).11D5, (C2×C10).79(C2×D4), (C10×C4○D4).12C2, (C2×C4).97(C5⋊D4), C22.22(C2×C5⋊D4), C2.36(C22×C5⋊D4), (C2×C4).249(C22×D5), SmallGroup(320,1497)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10.1052- 1+4
G = < a,b,c,d,e | a10=b4=1, c2=a5, d2=b2, e2=a5b2, bab-1=cac-1=eae-1=a-1, ad=da, cbc-1=a5b-1, dbd-1=ebe-1=a5b, dcd-1=a5c, ce=ec, ede-1=a5b2d >
Subgroups: 782 in 270 conjugacy classes, 111 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C42⋊C2, C22⋊Q8, C22.D4, C4.4D4, C4⋊Q8, C22×Q8, C2×C4○D4, Dic10, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C22×C10, C23.38C23, C4×Dic5, C10.D4, C4⋊Dic5, C23.D5, C2×Dic10, C2×Dic10, C22×Dic5, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, C5×C4○D4, C20.48D4, C23.21D10, C23.18D10, C20.17D4, Dic5⋊Q8, C22×Dic10, C10×C4○D4, C10.1052- 1+4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22×D4, 2- 1+4, C5⋊D4, C22×D5, C23.38C23, C2×C5⋊D4, C23×D5, D4.10D10, C22×C5⋊D4, C10.1052- 1+4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 125 30 118)(2 124 21 117)(3 123 22 116)(4 122 23 115)(5 121 24 114)(6 130 25 113)(7 129 26 112)(8 128 27 111)(9 127 28 120)(10 126 29 119)(11 69 159 51)(12 68 160 60)(13 67 151 59)(14 66 152 58)(15 65 153 57)(16 64 154 56)(17 63 155 55)(18 62 156 54)(19 61 157 53)(20 70 158 52)(31 99 49 106)(32 98 50 105)(33 97 41 104)(34 96 42 103)(35 95 43 102)(36 94 44 101)(37 93 45 110)(38 92 46 109)(39 91 47 108)(40 100 48 107)(71 139 90 146)(72 138 81 145)(73 137 82 144)(74 136 83 143)(75 135 84 142)(76 134 85 141)(77 133 86 150)(78 132 87 149)(79 131 88 148)(80 140 89 147)
(1 138 6 133)(2 137 7 132)(3 136 8 131)(4 135 9 140)(5 134 10 139)(11 44 16 49)(12 43 17 48)(13 42 18 47)(14 41 19 46)(15 50 20 45)(21 144 26 149)(22 143 27 148)(23 142 28 147)(24 141 29 146)(25 150 30 145)(31 159 36 154)(32 158 37 153)(33 157 38 152)(34 156 39 151)(35 155 40 160)(51 106 56 101)(52 105 57 110)(53 104 58 109)(54 103 59 108)(55 102 60 107)(61 97 66 92)(62 96 67 91)(63 95 68 100)(64 94 69 99)(65 93 70 98)(71 126 76 121)(72 125 77 130)(73 124 78 129)(74 123 79 128)(75 122 80 127)(81 118 86 113)(82 117 87 112)(83 116 88 111)(84 115 89 120)(85 114 90 119)
(1 57 30 65)(2 58 21 66)(3 59 22 67)(4 60 23 68)(5 51 24 69)(6 52 25 70)(7 53 26 61)(8 54 27 62)(9 55 28 63)(10 56 29 64)(11 119 159 126)(12 120 160 127)(13 111 151 128)(14 112 152 129)(15 113 153 130)(16 114 154 121)(17 115 155 122)(18 116 156 123)(19 117 157 124)(20 118 158 125)(31 76 49 85)(32 77 50 86)(33 78 41 87)(34 79 42 88)(35 80 43 89)(36 71 44 90)(37 72 45 81)(38 73 46 82)(39 74 47 83)(40 75 48 84)(91 131 108 148)(92 132 109 149)(93 133 110 150)(94 134 101 141)(95 135 102 142)(96 136 103 143)(97 137 104 144)(98 138 105 145)(99 139 106 146)(100 140 107 147)
(1 125 25 113)(2 124 26 112)(3 123 27 111)(4 122 28 120)(5 121 29 119)(6 130 30 118)(7 129 21 117)(8 128 22 116)(9 127 23 115)(10 126 24 114)(11 56 154 69)(12 55 155 68)(13 54 156 67)(14 53 157 66)(15 52 158 65)(16 51 159 64)(17 60 160 63)(18 59 151 62)(19 58 152 61)(20 57 153 70)(31 99 44 101)(32 98 45 110)(33 97 46 109)(34 96 47 108)(35 95 48 107)(36 94 49 106)(37 93 50 105)(38 92 41 104)(39 91 42 103)(40 100 43 102)(71 146 85 134)(72 145 86 133)(73 144 87 132)(74 143 88 131)(75 142 89 140)(76 141 90 139)(77 150 81 138)(78 149 82 137)(79 148 83 136)(80 147 84 135)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,125,30,118)(2,124,21,117)(3,123,22,116)(4,122,23,115)(5,121,24,114)(6,130,25,113)(7,129,26,112)(8,128,27,111)(9,127,28,120)(10,126,29,119)(11,69,159,51)(12,68,160,60)(13,67,151,59)(14,66,152,58)(15,65,153,57)(16,64,154,56)(17,63,155,55)(18,62,156,54)(19,61,157,53)(20,70,158,52)(31,99,49,106)(32,98,50,105)(33,97,41,104)(34,96,42,103)(35,95,43,102)(36,94,44,101)(37,93,45,110)(38,92,46,109)(39,91,47,108)(40,100,48,107)(71,139,90,146)(72,138,81,145)(73,137,82,144)(74,136,83,143)(75,135,84,142)(76,134,85,141)(77,133,86,150)(78,132,87,149)(79,131,88,148)(80,140,89,147), (1,138,6,133)(2,137,7,132)(3,136,8,131)(4,135,9,140)(5,134,10,139)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,144,26,149)(22,143,27,148)(23,142,28,147)(24,141,29,146)(25,150,30,145)(31,159,36,154)(32,158,37,153)(33,157,38,152)(34,156,39,151)(35,155,40,160)(51,106,56,101)(52,105,57,110)(53,104,58,109)(54,103,59,108)(55,102,60,107)(61,97,66,92)(62,96,67,91)(63,95,68,100)(64,94,69,99)(65,93,70,98)(71,126,76,121)(72,125,77,130)(73,124,78,129)(74,123,79,128)(75,122,80,127)(81,118,86,113)(82,117,87,112)(83,116,88,111)(84,115,89,120)(85,114,90,119), (1,57,30,65)(2,58,21,66)(3,59,22,67)(4,60,23,68)(5,51,24,69)(6,52,25,70)(7,53,26,61)(8,54,27,62)(9,55,28,63)(10,56,29,64)(11,119,159,126)(12,120,160,127)(13,111,151,128)(14,112,152,129)(15,113,153,130)(16,114,154,121)(17,115,155,122)(18,116,156,123)(19,117,157,124)(20,118,158,125)(31,76,49,85)(32,77,50,86)(33,78,41,87)(34,79,42,88)(35,80,43,89)(36,71,44,90)(37,72,45,81)(38,73,46,82)(39,74,47,83)(40,75,48,84)(91,131,108,148)(92,132,109,149)(93,133,110,150)(94,134,101,141)(95,135,102,142)(96,136,103,143)(97,137,104,144)(98,138,105,145)(99,139,106,146)(100,140,107,147), (1,125,25,113)(2,124,26,112)(3,123,27,111)(4,122,28,120)(5,121,29,119)(6,130,30,118)(7,129,21,117)(8,128,22,116)(9,127,23,115)(10,126,24,114)(11,56,154,69)(12,55,155,68)(13,54,156,67)(14,53,157,66)(15,52,158,65)(16,51,159,64)(17,60,160,63)(18,59,151,62)(19,58,152,61)(20,57,153,70)(31,99,44,101)(32,98,45,110)(33,97,46,109)(34,96,47,108)(35,95,48,107)(36,94,49,106)(37,93,50,105)(38,92,41,104)(39,91,42,103)(40,100,43,102)(71,146,85,134)(72,145,86,133)(73,144,87,132)(74,143,88,131)(75,142,89,140)(76,141,90,139)(77,150,81,138)(78,149,82,137)(79,148,83,136)(80,147,84,135)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,125,30,118)(2,124,21,117)(3,123,22,116)(4,122,23,115)(5,121,24,114)(6,130,25,113)(7,129,26,112)(8,128,27,111)(9,127,28,120)(10,126,29,119)(11,69,159,51)(12,68,160,60)(13,67,151,59)(14,66,152,58)(15,65,153,57)(16,64,154,56)(17,63,155,55)(18,62,156,54)(19,61,157,53)(20,70,158,52)(31,99,49,106)(32,98,50,105)(33,97,41,104)(34,96,42,103)(35,95,43,102)(36,94,44,101)(37,93,45,110)(38,92,46,109)(39,91,47,108)(40,100,48,107)(71,139,90,146)(72,138,81,145)(73,137,82,144)(74,136,83,143)(75,135,84,142)(76,134,85,141)(77,133,86,150)(78,132,87,149)(79,131,88,148)(80,140,89,147), (1,138,6,133)(2,137,7,132)(3,136,8,131)(4,135,9,140)(5,134,10,139)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,144,26,149)(22,143,27,148)(23,142,28,147)(24,141,29,146)(25,150,30,145)(31,159,36,154)(32,158,37,153)(33,157,38,152)(34,156,39,151)(35,155,40,160)(51,106,56,101)(52,105,57,110)(53,104,58,109)(54,103,59,108)(55,102,60,107)(61,97,66,92)(62,96,67,91)(63,95,68,100)(64,94,69,99)(65,93,70,98)(71,126,76,121)(72,125,77,130)(73,124,78,129)(74,123,79,128)(75,122,80,127)(81,118,86,113)(82,117,87,112)(83,116,88,111)(84,115,89,120)(85,114,90,119), (1,57,30,65)(2,58,21,66)(3,59,22,67)(4,60,23,68)(5,51,24,69)(6,52,25,70)(7,53,26,61)(8,54,27,62)(9,55,28,63)(10,56,29,64)(11,119,159,126)(12,120,160,127)(13,111,151,128)(14,112,152,129)(15,113,153,130)(16,114,154,121)(17,115,155,122)(18,116,156,123)(19,117,157,124)(20,118,158,125)(31,76,49,85)(32,77,50,86)(33,78,41,87)(34,79,42,88)(35,80,43,89)(36,71,44,90)(37,72,45,81)(38,73,46,82)(39,74,47,83)(40,75,48,84)(91,131,108,148)(92,132,109,149)(93,133,110,150)(94,134,101,141)(95,135,102,142)(96,136,103,143)(97,137,104,144)(98,138,105,145)(99,139,106,146)(100,140,107,147), (1,125,25,113)(2,124,26,112)(3,123,27,111)(4,122,28,120)(5,121,29,119)(6,130,30,118)(7,129,21,117)(8,128,22,116)(9,127,23,115)(10,126,24,114)(11,56,154,69)(12,55,155,68)(13,54,156,67)(14,53,157,66)(15,52,158,65)(16,51,159,64)(17,60,160,63)(18,59,151,62)(19,58,152,61)(20,57,153,70)(31,99,44,101)(32,98,45,110)(33,97,46,109)(34,96,47,108)(35,95,48,107)(36,94,49,106)(37,93,50,105)(38,92,41,104)(39,91,42,103)(40,100,43,102)(71,146,85,134)(72,145,86,133)(73,144,87,132)(74,143,88,131)(75,142,89,140)(76,141,90,139)(77,150,81,138)(78,149,82,137)(79,148,83,136)(80,147,84,135) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,125,30,118),(2,124,21,117),(3,123,22,116),(4,122,23,115),(5,121,24,114),(6,130,25,113),(7,129,26,112),(8,128,27,111),(9,127,28,120),(10,126,29,119),(11,69,159,51),(12,68,160,60),(13,67,151,59),(14,66,152,58),(15,65,153,57),(16,64,154,56),(17,63,155,55),(18,62,156,54),(19,61,157,53),(20,70,158,52),(31,99,49,106),(32,98,50,105),(33,97,41,104),(34,96,42,103),(35,95,43,102),(36,94,44,101),(37,93,45,110),(38,92,46,109),(39,91,47,108),(40,100,48,107),(71,139,90,146),(72,138,81,145),(73,137,82,144),(74,136,83,143),(75,135,84,142),(76,134,85,141),(77,133,86,150),(78,132,87,149),(79,131,88,148),(80,140,89,147)], [(1,138,6,133),(2,137,7,132),(3,136,8,131),(4,135,9,140),(5,134,10,139),(11,44,16,49),(12,43,17,48),(13,42,18,47),(14,41,19,46),(15,50,20,45),(21,144,26,149),(22,143,27,148),(23,142,28,147),(24,141,29,146),(25,150,30,145),(31,159,36,154),(32,158,37,153),(33,157,38,152),(34,156,39,151),(35,155,40,160),(51,106,56,101),(52,105,57,110),(53,104,58,109),(54,103,59,108),(55,102,60,107),(61,97,66,92),(62,96,67,91),(63,95,68,100),(64,94,69,99),(65,93,70,98),(71,126,76,121),(72,125,77,130),(73,124,78,129),(74,123,79,128),(75,122,80,127),(81,118,86,113),(82,117,87,112),(83,116,88,111),(84,115,89,120),(85,114,90,119)], [(1,57,30,65),(2,58,21,66),(3,59,22,67),(4,60,23,68),(5,51,24,69),(6,52,25,70),(7,53,26,61),(8,54,27,62),(9,55,28,63),(10,56,29,64),(11,119,159,126),(12,120,160,127),(13,111,151,128),(14,112,152,129),(15,113,153,130),(16,114,154,121),(17,115,155,122),(18,116,156,123),(19,117,157,124),(20,118,158,125),(31,76,49,85),(32,77,50,86),(33,78,41,87),(34,79,42,88),(35,80,43,89),(36,71,44,90),(37,72,45,81),(38,73,46,82),(39,74,47,83),(40,75,48,84),(91,131,108,148),(92,132,109,149),(93,133,110,150),(94,134,101,141),(95,135,102,142),(96,136,103,143),(97,137,104,144),(98,138,105,145),(99,139,106,146),(100,140,107,147)], [(1,125,25,113),(2,124,26,112),(3,123,27,111),(4,122,28,120),(5,121,29,119),(6,130,30,118),(7,129,21,117),(8,128,22,116),(9,127,23,115),(10,126,24,114),(11,56,154,69),(12,55,155,68),(13,54,156,67),(14,53,157,66),(15,52,158,65),(16,51,159,64),(17,60,160,63),(18,59,151,62),(19,58,152,61),(20,57,153,70),(31,99,44,101),(32,98,45,110),(33,97,46,109),(34,96,47,108),(35,95,48,107),(36,94,49,106),(37,93,50,105),(38,92,41,104),(39,91,42,103),(40,100,43,102),(71,146,85,134),(72,145,86,133),(73,144,87,132),(74,143,88,131),(75,142,89,140),(76,141,90,139),(77,150,81,138),(78,149,82,137),(79,148,83,136),(80,147,84,135)]])
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | ··· | 4N | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10R | 20A | ··· | 20H | 20I | ··· | 20T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | D10 | D10 | D10 | C5⋊D4 | 2- 1+4 | D4.10D10 |
kernel | C10.1052- 1+4 | C20.48D4 | C23.21D10 | C23.18D10 | C20.17D4 | Dic5⋊Q8 | C22×Dic10 | C10×C4○D4 | C2×C20 | C2×C4○D4 | C22×C4 | C2×D4 | C2×Q8 | C2×C4 | C10 | C2 |
# reps | 1 | 4 | 1 | 4 | 2 | 2 | 1 | 1 | 4 | 2 | 6 | 6 | 2 | 16 | 2 | 8 |
Matrix representation of C10.1052- 1+4 ►in GL6(𝔽41)
31 | 0 | 0 | 0 | 0 | 0 |
17 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 25 | 0 | 0 | 0 |
0 | 0 | 29 | 23 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 0 |
0 | 0 | 14 | 0 | 27 | 23 |
31 | 40 | 0 | 0 | 0 | 0 |
17 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 7 | 1 |
0 | 0 | 0 | 34 | 4 | 35 |
0 | 0 | 7 | 8 | 0 | 0 |
0 | 0 | 32 | 0 | 9 | 7 |
10 | 1 | 0 | 0 | 0 | 0 |
22 | 31 | 0 | 0 | 0 | 0 |
0 | 0 | 19 | 10 | 0 | 0 |
0 | 0 | 13 | 22 | 0 | 0 |
0 | 0 | 0 | 31 | 22 | 9 |
0 | 0 | 19 | 17 | 19 | 19 |
1 | 0 | 0 | 0 | 0 | 0 |
21 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 36 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 25 | 0 | 40 |
10 | 1 | 0 | 0 | 0 | 0 |
22 | 31 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 33 | 34 | 40 |
0 | 0 | 0 | 7 | 37 | 6 |
0 | 0 | 7 | 8 | 0 | 0 |
0 | 0 | 32 | 11 | 32 | 34 |
G:=sub<GL(6,GF(41))| [31,17,0,0,0,0,0,4,0,0,0,0,0,0,25,29,0,14,0,0,0,23,0,0,0,0,0,0,25,27,0,0,0,0,0,23],[31,17,0,0,0,0,40,10,0,0,0,0,0,0,0,0,7,32,0,0,8,34,8,0,0,0,7,4,0,9,0,0,1,35,0,7],[10,22,0,0,0,0,1,31,0,0,0,0,0,0,19,13,0,19,0,0,10,22,31,17,0,0,0,0,22,19,0,0,0,0,9,19],[1,21,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,25,0,0,1,0,0,0,0,0,0,36,0,40],[10,22,0,0,0,0,1,31,0,0,0,0,0,0,0,0,7,32,0,0,33,7,8,11,0,0,34,37,0,32,0,0,40,6,0,34] >;
C10.1052- 1+4 in GAP, Magma, Sage, TeX
C_{10}._{105}2_-^{1+4}
% in TeX
G:=Group("C10.105ES-(2,2)");
// GroupNames label
G:=SmallGroup(320,1497);
// by ID
G=gap.SmallGroup(320,1497);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,184,675,570,12550]);
// Polycyclic
G:=Group<a,b,c,d,e|a^10=b^4=1,c^2=a^5,d^2=b^2,e^2=a^5*b^2,b*a*b^-1=c*a*c^-1=e*a*e^-1=a^-1,a*d=d*a,c*b*c^-1=a^5*b^-1,d*b*d^-1=e*b*e^-1=a^5*b,d*c*d^-1=a^5*c,c*e=e*c,e*d*e^-1=a^5*b^2*d>;
// generators/relations