Copied to
clipboard

G = C2×D4.8D10order 320 = 26·5

Direct product of C2 and D4.8D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4.8D10, C20.34C24, D20.30C23, Dic10.29C23, C4○D415D10, C105(C4○D8), D4⋊D523C22, (C2×C20).502D4, C20.263(C2×D4), Q8⋊D521C22, C4.34(C23×D5), (C2×D4).232D10, C4○D2020C22, C52C8.30C23, D4.D520C22, (C2×Q8).190D10, C5⋊Q1620C22, (C5×D4).22C23, D4.22(C22×D5), (C5×Q8).22C23, Q8.22(C22×D5), (C2×C20).556C23, (C22×C10).123D4, C10.159(C22×D4), (C22×C4).387D10, C23.45(C5⋊D4), (D4×C10).272C22, (C2×D20).288C22, (Q8×C10).237C22, (C22×C20).291C22, (C2×Dic10).317C22, C56(C2×C4○D8), (C2×C4○D4)⋊3D5, (C2×D4⋊D5)⋊33C2, (C10×C4○D4)⋊3C2, (C2×Q8⋊D5)⋊33C2, C4.30(C2×C5⋊D4), (C2×C4○D20)⋊30C2, (C2×D4.D5)⋊33C2, (C2×C5⋊Q16)⋊33C2, (C2×C10).76(C2×D4), (C2×C52C8)⋊42C22, (C22×C52C8)⋊15C2, (C5×C4○D4)⋊17C22, C2.32(C22×C5⋊D4), (C2×C4).158(C5⋊D4), (C2×C4).636(C22×D5), C22.119(C2×C5⋊D4), SmallGroup(320,1493)

Series: Derived Chief Lower central Upper central

C1C20 — C2×D4.8D10
C1C5C10C20D20C2×D20C2×C4○D20 — C2×D4.8D10
C5C10C20 — C2×D4.8D10
C1C2×C4C22×C4C2×C4○D4

Generators and relations for C2×D4.8D10
 G = < a,b,c,d,e | a2=b4=c2=1, d10=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d9 >

Subgroups: 830 in 266 conjugacy classes, 111 normal (35 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, D5, C10, C10, C10, C2×C8, D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic5, C20, C20, C20, D10, C2×C10, C2×C10, C2×C10, C22×C8, C2×D8, C2×SD16, C2×Q16, C4○D8, C2×C4○D4, C2×C4○D4, C52C8, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×D5, C22×C10, C22×C10, C2×C4○D8, C2×C52C8, C2×C52C8, D4⋊D5, D4.D5, Q8⋊D5, C5⋊Q16, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, C4○D20, C2×C5⋊D4, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, C5×C4○D4, C5×C4○D4, C22×C52C8, C2×D4⋊D5, C2×D4.D5, C2×Q8⋊D5, C2×C5⋊Q16, D4.8D10, C2×C4○D20, C10×C4○D4, C2×D4.8D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C4○D8, C22×D4, C5⋊D4, C22×D5, C2×C4○D8, C2×C5⋊D4, C23×D5, D4.8D10, C22×C5⋊D4, C2×D4.8D10

Smallest permutation representation of C2×D4.8D10
On 160 points
Generators in S160
(1 110)(2 111)(3 112)(4 113)(5 114)(6 115)(7 116)(8 117)(9 118)(10 119)(11 120)(12 101)(13 102)(14 103)(15 104)(16 105)(17 106)(18 107)(19 108)(20 109)(21 58)(22 59)(23 60)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 57)(61 132)(62 133)(63 134)(64 135)(65 136)(66 137)(67 138)(68 139)(69 140)(70 121)(71 122)(72 123)(73 124)(74 125)(75 126)(76 127)(77 128)(78 129)(79 130)(80 131)(81 150)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)(89 158)(90 159)(91 160)(92 141)(93 142)(94 143)(95 144)(96 145)(97 146)(98 147)(99 148)(100 149)
(1 98 11 88)(2 99 12 89)(3 100 13 90)(4 81 14 91)(5 82 15 92)(6 83 16 93)(7 84 17 94)(8 85 18 95)(9 86 19 96)(10 87 20 97)(21 61 31 71)(22 62 32 72)(23 63 33 73)(24 64 34 74)(25 65 35 75)(26 66 36 76)(27 67 37 77)(28 68 38 78)(29 69 39 79)(30 70 40 80)(41 135 51 125)(42 136 52 126)(43 137 53 127)(44 138 54 128)(45 139 55 129)(46 140 56 130)(47 121 57 131)(48 122 58 132)(49 123 59 133)(50 124 60 134)(101 158 111 148)(102 159 112 149)(103 160 113 150)(104 141 114 151)(105 142 115 152)(106 143 116 153)(107 144 117 154)(108 145 118 155)(109 146 119 156)(110 147 120 157)
(1 38)(2 39)(3 40)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)(19 36)(20 37)(41 116)(42 117)(43 118)(44 119)(45 120)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(57 112)(58 113)(59 114)(60 115)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 81)(72 82)(73 83)(74 84)(75 85)(76 86)(77 87)(78 88)(79 89)(80 90)(121 149)(122 150)(123 151)(124 152)(125 153)(126 154)(127 155)(128 156)(129 157)(130 158)(131 159)(132 160)(133 141)(134 142)(135 143)(136 144)(137 145)(138 146)(139 147)(140 148)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 64 31 74)(22 73 32 63)(23 62 33 72)(24 71 34 61)(25 80 35 70)(26 69 36 79)(27 78 37 68)(28 67 38 77)(29 76 39 66)(30 65 40 75)(41 122 51 132)(42 131 52 121)(43 140 53 130)(44 129 54 139)(45 138 55 128)(46 127 56 137)(47 136 57 126)(48 125 58 135)(49 134 59 124)(50 123 60 133)(81 84 91 94)(82 93 92 83)(85 100 95 90)(86 89 96 99)(87 98 97 88)(101 118 111 108)(102 107 112 117)(103 116 113 106)(104 105 114 115)(109 110 119 120)(141 152 151 142)(143 150 153 160)(144 159 154 149)(145 148 155 158)(146 157 156 147)

G:=sub<Sym(160)| (1,110)(2,111)(3,112)(4,113)(5,114)(6,115)(7,116)(8,117)(9,118)(10,119)(11,120)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,109)(21,58)(22,59)(23,60)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,141)(93,142)(94,143)(95,144)(96,145)(97,146)(98,147)(99,148)(100,149), (1,98,11,88)(2,99,12,89)(3,100,13,90)(4,81,14,91)(5,82,15,92)(6,83,16,93)(7,84,17,94)(8,85,18,95)(9,86,19,96)(10,87,20,97)(21,61,31,71)(22,62,32,72)(23,63,33,73)(24,64,34,74)(25,65,35,75)(26,66,36,76)(27,67,37,77)(28,68,38,78)(29,69,39,79)(30,70,40,80)(41,135,51,125)(42,136,52,126)(43,137,53,127)(44,138,54,128)(45,139,55,129)(46,140,56,130)(47,121,57,131)(48,122,58,132)(49,123,59,133)(50,124,60,134)(101,158,111,148)(102,159,112,149)(103,160,113,150)(104,141,114,151)(105,142,115,152)(106,143,116,153)(107,144,117,154)(108,145,118,155)(109,146,119,156)(110,147,120,157), (1,38)(2,39)(3,40)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(41,116)(42,117)(43,118)(44,119)(45,120)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)(139,147)(140,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,64,31,74)(22,73,32,63)(23,62,33,72)(24,71,34,61)(25,80,35,70)(26,69,36,79)(27,78,37,68)(28,67,38,77)(29,76,39,66)(30,65,40,75)(41,122,51,132)(42,131,52,121)(43,140,53,130)(44,129,54,139)(45,138,55,128)(46,127,56,137)(47,136,57,126)(48,125,58,135)(49,134,59,124)(50,123,60,133)(81,84,91,94)(82,93,92,83)(85,100,95,90)(86,89,96,99)(87,98,97,88)(101,118,111,108)(102,107,112,117)(103,116,113,106)(104,105,114,115)(109,110,119,120)(141,152,151,142)(143,150,153,160)(144,159,154,149)(145,148,155,158)(146,157,156,147)>;

G:=Group( (1,110)(2,111)(3,112)(4,113)(5,114)(6,115)(7,116)(8,117)(9,118)(10,119)(11,120)(12,101)(13,102)(14,103)(15,104)(16,105)(17,106)(18,107)(19,108)(20,109)(21,58)(22,59)(23,60)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(61,132)(62,133)(63,134)(64,135)(65,136)(66,137)(67,138)(68,139)(69,140)(70,121)(71,122)(72,123)(73,124)(74,125)(75,126)(76,127)(77,128)(78,129)(79,130)(80,131)(81,150)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159)(91,160)(92,141)(93,142)(94,143)(95,144)(96,145)(97,146)(98,147)(99,148)(100,149), (1,98,11,88)(2,99,12,89)(3,100,13,90)(4,81,14,91)(5,82,15,92)(6,83,16,93)(7,84,17,94)(8,85,18,95)(9,86,19,96)(10,87,20,97)(21,61,31,71)(22,62,32,72)(23,63,33,73)(24,64,34,74)(25,65,35,75)(26,66,36,76)(27,67,37,77)(28,68,38,78)(29,69,39,79)(30,70,40,80)(41,135,51,125)(42,136,52,126)(43,137,53,127)(44,138,54,128)(45,139,55,129)(46,140,56,130)(47,121,57,131)(48,122,58,132)(49,123,59,133)(50,124,60,134)(101,158,111,148)(102,159,112,149)(103,160,113,150)(104,141,114,151)(105,142,115,152)(106,143,116,153)(107,144,117,154)(108,145,118,155)(109,146,119,156)(110,147,120,157), (1,38)(2,39)(3,40)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35)(19,36)(20,37)(41,116)(42,117)(43,118)(44,119)(45,120)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)(129,157)(130,158)(131,159)(132,160)(133,141)(134,142)(135,143)(136,144)(137,145)(138,146)(139,147)(140,148), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,64,31,74)(22,73,32,63)(23,62,33,72)(24,71,34,61)(25,80,35,70)(26,69,36,79)(27,78,37,68)(28,67,38,77)(29,76,39,66)(30,65,40,75)(41,122,51,132)(42,131,52,121)(43,140,53,130)(44,129,54,139)(45,138,55,128)(46,127,56,137)(47,136,57,126)(48,125,58,135)(49,134,59,124)(50,123,60,133)(81,84,91,94)(82,93,92,83)(85,100,95,90)(86,89,96,99)(87,98,97,88)(101,118,111,108)(102,107,112,117)(103,116,113,106)(104,105,114,115)(109,110,119,120)(141,152,151,142)(143,150,153,160)(144,159,154,149)(145,148,155,158)(146,157,156,147) );

G=PermutationGroup([[(1,110),(2,111),(3,112),(4,113),(5,114),(6,115),(7,116),(8,117),(9,118),(10,119),(11,120),(12,101),(13,102),(14,103),(15,104),(16,105),(17,106),(18,107),(19,108),(20,109),(21,58),(22,59),(23,60),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,57),(61,132),(62,133),(63,134),(64,135),(65,136),(66,137),(67,138),(68,139),(69,140),(70,121),(71,122),(72,123),(73,124),(74,125),(75,126),(76,127),(77,128),(78,129),(79,130),(80,131),(81,150),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157),(89,158),(90,159),(91,160),(92,141),(93,142),(94,143),(95,144),(96,145),(97,146),(98,147),(99,148),(100,149)], [(1,98,11,88),(2,99,12,89),(3,100,13,90),(4,81,14,91),(5,82,15,92),(6,83,16,93),(7,84,17,94),(8,85,18,95),(9,86,19,96),(10,87,20,97),(21,61,31,71),(22,62,32,72),(23,63,33,73),(24,64,34,74),(25,65,35,75),(26,66,36,76),(27,67,37,77),(28,68,38,78),(29,69,39,79),(30,70,40,80),(41,135,51,125),(42,136,52,126),(43,137,53,127),(44,138,54,128),(45,139,55,129),(46,140,56,130),(47,121,57,131),(48,122,58,132),(49,123,59,133),(50,124,60,134),(101,158,111,148),(102,159,112,149),(103,160,113,150),(104,141,114,151),(105,142,115,152),(106,143,116,153),(107,144,117,154),(108,145,118,155),(109,146,119,156),(110,147,120,157)], [(1,38),(2,39),(3,40),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35),(19,36),(20,37),(41,116),(42,117),(43,118),(44,119),(45,120),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(57,112),(58,113),(59,114),(60,115),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,81),(72,82),(73,83),(74,84),(75,85),(76,86),(77,87),(78,88),(79,89),(80,90),(121,149),(122,150),(123,151),(124,152),(125,153),(126,154),(127,155),(128,156),(129,157),(130,158),(131,159),(132,160),(133,141),(134,142),(135,143),(136,144),(137,145),(138,146),(139,147),(140,148)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,64,31,74),(22,73,32,63),(23,62,33,72),(24,71,34,61),(25,80,35,70),(26,69,36,79),(27,78,37,68),(28,67,38,77),(29,76,39,66),(30,65,40,75),(41,122,51,132),(42,131,52,121),(43,140,53,130),(44,129,54,139),(45,138,55,128),(46,127,56,137),(47,136,57,126),(48,125,58,135),(49,134,59,124),(50,123,60,133),(81,84,91,94),(82,93,92,83),(85,100,95,90),(86,89,96,99),(87,98,97,88),(101,118,111,108),(102,107,112,117),(103,116,113,106),(104,105,114,115),(109,110,119,120),(141,152,151,142),(143,150,153,160),(144,159,154,149),(145,148,155,158),(146,157,156,147)]])

68 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H4I4J5A5B8A···8H10A···10F10G···10R20A···20H20I···20T
order12222222224444444444558···810···1010···1020···2020···20
size1111224420201111224420202210···102···24···42···24···4

68 irreducible representations

dim11111111122222222224
type++++++++++++++++
imageC1C2C2C2C2C2C2C2C2D4D4D5D10D10D10D10C4○D8C5⋊D4C5⋊D4D4.8D10
kernelC2×D4.8D10C22×C52C8C2×D4⋊D5C2×D4.D5C2×Q8⋊D5C2×C5⋊Q16D4.8D10C2×C4○D20C10×C4○D4C2×C20C22×C10C2×C4○D4C22×C4C2×D4C2×Q8C4○D4C10C2×C4C23C2
# reps111111811312222881248

Matrix representation of C2×D4.8D10 in GL6(𝔽41)

100000
010000
0040000
0004000
000010
000001
,
100000
010000
0040000
0004000
00004039
000011
,
100000
010000
0040400
000100
00001717
00001224
,
1350000
660000
001000
000100
000090
000009
,
1350000
0400000
001000
00214000
000090
00003232

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,4,1,0,0,0,0,0,0,17,12,0,0,0,0,17,24],[1,6,0,0,0,0,35,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,0,0,0,0,0,35,40,0,0,0,0,0,0,1,21,0,0,0,0,0,40,0,0,0,0,0,0,9,32,0,0,0,0,0,32] >;

C2×D4.8D10 in GAP, Magma, Sage, TeX

C_2\times D_4._8D_{10}
% in TeX

G:=Group("C2xD4.8D10");
// GroupNames label

G:=SmallGroup(320,1493);
// by ID

G=gap.SmallGroup(320,1493);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,1684,235,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=1,d^10=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^9>;
// generators/relations

׿
×
𝔽