Extensions 1→N→G→Q→1 with N=D10⋊C8 and Q=C2

Direct product G=N×Q with N=D10⋊C8 and Q=C2
dρLabelID
C2×D10⋊C8160C2xD10:C8320,1089

Semidirect products G=N:Q with N=D10⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
D10⋊C81C2 = D10.1D8φ: C2/C1C2 ⊆ Out D10⋊C880D10:C8:1C2320,206
D10⋊C82C2 = D10.SD16φ: C2/C1C2 ⊆ Out D10⋊C880D10:C8:2C2320,258
D10⋊C83C2 = (C2×D4).7F5φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8:3C2320,1113
D10⋊C84C2 = (C2×Q8).5F5φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8:4C2320,1125
D10⋊C85C2 = D109M4(2)φ: C2/C1C2 ⊆ Out D10⋊C880D10:C8:5C2320,1093
D10⋊C86C2 = D1010M4(2)φ: C2/C1C2 ⊆ Out D10⋊C880D10:C8:6C2320,1094
D10⋊C87C2 = C5⋊C8⋊D4φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8:7C2320,1031
D10⋊C88C2 = Dic5⋊M4(2)φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8:8C2320,1033
D10⋊C89C2 = D102M4(2)φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8:9C2320,1042
D10⋊C810C2 = C20⋊M4(2)φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8:10C2320,1043
D10⋊C811C2 = C5⋊C88D4φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8:11C2320,1030
D10⋊C812C2 = D10⋊M4(2)φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8:12C2320,1032
D10⋊C813C2 = D202C8φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8:13C2320,1040
D10⋊C814C2 = D10.11M4(2)φ: trivial image80D10:C8:14C2320,1091

Non-split extensions G=N.Q with N=D10⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
D10⋊C8.1C2 = D10.1Q16φ: C2/C1C2 ⊆ Out D10⋊C880D10:C8.1C2320,207
D10⋊C8.2C2 = D10.Q16φ: C2/C1C2 ⊆ Out D10⋊C880D10:C8.2C2320,264
D10⋊C8.3C2 = C4⋊C4.7F5φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8.3C2320,1044
D10⋊C8.4C2 = C42.15F5φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8.4C2320,1021
D10⋊C8.5C2 = C42.7F5φ: C2/C1C2 ⊆ Out D10⋊C8160D10:C8.5C2320,1022
D10⋊C8.6C2 = C42.6F5φ: trivial image160D10:C8.6C2320,1016
D10⋊C8.7C2 = C42.12F5φ: trivial image160D10:C8.7C2320,1018

׿
×
𝔽