metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊C8⋊8D4, C5⋊D4⋊C8, C5⋊1(C8×D4), Dic5⋊(C2×C8), C2.1(D4×F5), D10⋊1(C2×C8), C10.1(C4×D4), C22⋊C4.8F5, C22⋊1(D5⋊C8), C10.2(C8○D4), C10.5(C22×C8), D10⋊C8⋊11C2, C2.2(D4.F5), C23.24(C2×F5), D10⋊C4.5C4, Dic5.65(C2×D4), C10.D4.6C4, C23.2F5⋊3C2, Dic5⋊C8⋊12C2, Dic5.50(C4○D4), Dic5⋊4D4.10C2, C22.34(C22×F5), (C2×Dic5).322C23, (C4×Dic5).247C22, (C22×Dic5).177C22, (C4×C5⋊C8)⋊11C2, (C2×C10)⋊1(C2×C8), (C2×D5⋊C8)⋊8C2, (C22×C5⋊C8)⋊1C2, C2.7(C2×D5⋊C8), (C2×C5⋊D4).3C4, (C2×C4).57(C2×F5), (C2×C20).90(C2×C4), (C5×C22⋊C4).8C4, (C2×C5⋊C8).20C22, (C2×C4×D5).286C22, (C2×C10).30(C22×C4), (C22×C10).13(C2×C4), (C2×Dic5).47(C2×C4), (C22×D5).39(C2×C4), SmallGroup(320,1030)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C22×C5⋊C8 — C5⋊C8⋊8D4 |
Generators and relations for C5⋊C8⋊8D4
G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=a3, cac-1=a-1, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 442 in 134 conjugacy classes, 56 normal (42 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, Dic5, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C5⋊C8, C5⋊C8, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×C10, C8×D4, C4×Dic5, C10.D4, D10⋊C4, C5×C22⋊C4, D5⋊C8, C2×C5⋊C8, C2×C5⋊C8, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C4×C5⋊C8, D10⋊C8, Dic5⋊C8, C23.2F5, Dic5⋊4D4, C2×D5⋊C8, C22×C5⋊C8, C5⋊C8⋊8D4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C2×C8, C22×C4, C2×D4, C4○D4, F5, C4×D4, C22×C8, C8○D4, C2×F5, C8×D4, D5⋊C8, C22×F5, C2×D5⋊C8, D4.F5, D4×F5, C5⋊C8⋊8D4
(1 147 132 143 113)(2 144 148 114 133)(3 115 137 134 149)(4 135 116 150 138)(5 151 136 139 117)(6 140 152 118 129)(7 119 141 130 145)(8 131 120 146 142)(9 27 81 111 39)(10 112 28 40 82)(11 33 105 83 29)(12 84 34 30 106)(13 31 85 107 35)(14 108 32 36 86)(15 37 109 87 25)(16 88 38 26 110)(17 55 128 103 70)(18 104 56 71 121)(19 72 97 122 49)(20 123 65 50 98)(21 51 124 99 66)(22 100 52 67 125)(23 68 101 126 53)(24 127 69 54 102)(41 89 73 63 157)(42 64 90 158 74)(43 159 57 75 91)(44 76 160 92 58)(45 93 77 59 153)(46 60 94 154 78)(47 155 61 79 95)(48 80 156 96 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 83 57 71)(2 84 58 72)(3 85 59 65)(4 86 60 66)(5 87 61 67)(6 88 62 68)(7 81 63 69)(8 82 64 70)(9 41 24 141)(10 42 17 142)(11 43 18 143)(12 44 19 144)(13 45 20 137)(14 46 21 138)(15 47 22 139)(16 48 23 140)(25 155 125 117)(26 156 126 118)(27 157 127 119)(28 158 128 120)(29 159 121 113)(30 160 122 114)(31 153 123 115)(32 154 124 116)(33 91 104 132)(34 92 97 133)(35 93 98 134)(36 94 99 135)(37 95 100 136)(38 96 101 129)(39 89 102 130)(40 90 103 131)(49 148 106 76)(50 149 107 77)(51 150 108 78)(52 151 109 79)(53 152 110 80)(54 145 111 73)(55 146 112 74)(56 147 105 75)
(1 71)(2 72)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 89)(10 90)(11 91)(12 92)(13 93)(14 94)(15 95)(16 96)(17 131)(18 132)(19 133)(20 134)(21 135)(22 136)(23 129)(24 130)(25 79)(26 80)(27 73)(28 74)(29 75)(30 76)(31 77)(32 78)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 41)(40 42)(49 114)(50 115)(51 116)(52 117)(53 118)(54 119)(55 120)(56 113)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 81)(64 82)(97 144)(98 137)(99 138)(100 139)(101 140)(102 141)(103 142)(104 143)(105 159)(106 160)(107 153)(108 154)(109 155)(110 156)(111 157)(112 158)(121 147)(122 148)(123 149)(124 150)(125 151)(126 152)(127 145)(128 146)
G:=sub<Sym(160)| (1,147,132,143,113)(2,144,148,114,133)(3,115,137,134,149)(4,135,116,150,138)(5,151,136,139,117)(6,140,152,118,129)(7,119,141,130,145)(8,131,120,146,142)(9,27,81,111,39)(10,112,28,40,82)(11,33,105,83,29)(12,84,34,30,106)(13,31,85,107,35)(14,108,32,36,86)(15,37,109,87,25)(16,88,38,26,110)(17,55,128,103,70)(18,104,56,71,121)(19,72,97,122,49)(20,123,65,50,98)(21,51,124,99,66)(22,100,52,67,125)(23,68,101,126,53)(24,127,69,54,102)(41,89,73,63,157)(42,64,90,158,74)(43,159,57,75,91)(44,76,160,92,58)(45,93,77,59,153)(46,60,94,154,78)(47,155,61,79,95)(48,80,156,96,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,83,57,71)(2,84,58,72)(3,85,59,65)(4,86,60,66)(5,87,61,67)(6,88,62,68)(7,81,63,69)(8,82,64,70)(9,41,24,141)(10,42,17,142)(11,43,18,143)(12,44,19,144)(13,45,20,137)(14,46,21,138)(15,47,22,139)(16,48,23,140)(25,155,125,117)(26,156,126,118)(27,157,127,119)(28,158,128,120)(29,159,121,113)(30,160,122,114)(31,153,123,115)(32,154,124,116)(33,91,104,132)(34,92,97,133)(35,93,98,134)(36,94,99,135)(37,95,100,136)(38,96,101,129)(39,89,102,130)(40,90,103,131)(49,148,106,76)(50,149,107,77)(51,150,108,78)(52,151,109,79)(53,152,110,80)(54,145,111,73)(55,146,112,74)(56,147,105,75), (1,71)(2,72)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,79)(26,80)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,113)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,81)(64,82)(97,144)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,159)(106,160)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,145)(128,146)>;
G:=Group( (1,147,132,143,113)(2,144,148,114,133)(3,115,137,134,149)(4,135,116,150,138)(5,151,136,139,117)(6,140,152,118,129)(7,119,141,130,145)(8,131,120,146,142)(9,27,81,111,39)(10,112,28,40,82)(11,33,105,83,29)(12,84,34,30,106)(13,31,85,107,35)(14,108,32,36,86)(15,37,109,87,25)(16,88,38,26,110)(17,55,128,103,70)(18,104,56,71,121)(19,72,97,122,49)(20,123,65,50,98)(21,51,124,99,66)(22,100,52,67,125)(23,68,101,126,53)(24,127,69,54,102)(41,89,73,63,157)(42,64,90,158,74)(43,159,57,75,91)(44,76,160,92,58)(45,93,77,59,153)(46,60,94,154,78)(47,155,61,79,95)(48,80,156,96,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,83,57,71)(2,84,58,72)(3,85,59,65)(4,86,60,66)(5,87,61,67)(6,88,62,68)(7,81,63,69)(8,82,64,70)(9,41,24,141)(10,42,17,142)(11,43,18,143)(12,44,19,144)(13,45,20,137)(14,46,21,138)(15,47,22,139)(16,48,23,140)(25,155,125,117)(26,156,126,118)(27,157,127,119)(28,158,128,120)(29,159,121,113)(30,160,122,114)(31,153,123,115)(32,154,124,116)(33,91,104,132)(34,92,97,133)(35,93,98,134)(36,94,99,135)(37,95,100,136)(38,96,101,129)(39,89,102,130)(40,90,103,131)(49,148,106,76)(50,149,107,77)(51,150,108,78)(52,151,109,79)(53,152,110,80)(54,145,111,73)(55,146,112,74)(56,147,105,75), (1,71)(2,72)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,79)(26,80)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,113)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,81)(64,82)(97,144)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,159)(106,160)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,145)(128,146) );
G=PermutationGroup([[(1,147,132,143,113),(2,144,148,114,133),(3,115,137,134,149),(4,135,116,150,138),(5,151,136,139,117),(6,140,152,118,129),(7,119,141,130,145),(8,131,120,146,142),(9,27,81,111,39),(10,112,28,40,82),(11,33,105,83,29),(12,84,34,30,106),(13,31,85,107,35),(14,108,32,36,86),(15,37,109,87,25),(16,88,38,26,110),(17,55,128,103,70),(18,104,56,71,121),(19,72,97,122,49),(20,123,65,50,98),(21,51,124,99,66),(22,100,52,67,125),(23,68,101,126,53),(24,127,69,54,102),(41,89,73,63,157),(42,64,90,158,74),(43,159,57,75,91),(44,76,160,92,58),(45,93,77,59,153),(46,60,94,154,78),(47,155,61,79,95),(48,80,156,96,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,83,57,71),(2,84,58,72),(3,85,59,65),(4,86,60,66),(5,87,61,67),(6,88,62,68),(7,81,63,69),(8,82,64,70),(9,41,24,141),(10,42,17,142),(11,43,18,143),(12,44,19,144),(13,45,20,137),(14,46,21,138),(15,47,22,139),(16,48,23,140),(25,155,125,117),(26,156,126,118),(27,157,127,119),(28,158,128,120),(29,159,121,113),(30,160,122,114),(31,153,123,115),(32,154,124,116),(33,91,104,132),(34,92,97,133),(35,93,98,134),(36,94,99,135),(37,95,100,136),(38,96,101,129),(39,89,102,130),(40,90,103,131),(49,148,106,76),(50,149,107,77),(51,150,108,78),(52,151,109,79),(53,152,110,80),(54,145,111,73),(55,146,112,74),(56,147,105,75)], [(1,71),(2,72),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,89),(10,90),(11,91),(12,92),(13,93),(14,94),(15,95),(16,96),(17,131),(18,132),(19,133),(20,134),(21,135),(22,136),(23,129),(24,130),(25,79),(26,80),(27,73),(28,74),(29,75),(30,76),(31,77),(32,78),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,41),(40,42),(49,114),(50,115),(51,116),(52,117),(53,118),(54,119),(55,120),(56,113),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,81),(64,82),(97,144),(98,137),(99,138),(100,139),(101,140),(102,141),(103,142),(104,143),(105,159),(106,160),(107,153),(108,154),(109,155),(110,156),(111,157),(112,158),(121,147),(122,148),(123,149),(124,150),(125,151),(126,152),(127,145),(128,146)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5 | 8A | ··· | 8H | 8I | ··· | 8T | 10A | 10B | 10C | 10D | 10E | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | ··· | 8 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 10 | 2 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 4 | 5 | ··· | 5 | 10 | ··· | 10 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C8 | D4 | C4○D4 | C8○D4 | F5 | C2×F5 | C2×F5 | D5⋊C8 | D4.F5 | D4×F5 |
kernel | C5⋊C8⋊8D4 | C4×C5⋊C8 | D10⋊C8 | Dic5⋊C8 | C23.2F5 | Dic5⋊4D4 | C2×D5⋊C8 | C22×C5⋊C8 | C10.D4 | D10⋊C4 | C5×C22⋊C4 | C2×C5⋊D4 | C5⋊D4 | C5⋊C8 | Dic5 | C10 | C22⋊C4 | C2×C4 | C23 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 16 | 2 | 2 | 4 | 1 | 2 | 1 | 4 | 1 | 1 |
Matrix representation of C5⋊C8⋊8D4 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 19 | 0 | 22 | 21 |
0 | 0 | 0 | 21 | 1 | 40 |
0 | 0 | 20 | 40 | 1 | 21 |
0 | 0 | 20 | 21 | 22 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 1 | 40 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,19,0,20,20,0,0,0,21,40,21,0,0,22,1,1,22,0,0,21,40,21,0],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,1,1,1,1,0,0,0,0,0,40,0,0,0,0,40,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;
C5⋊C8⋊8D4 in GAP, Magma, Sage, TeX
C_5\rtimes C_8\rtimes_8D_4
% in TeX
G:=Group("C5:C8:8D4");
// GroupNames label
G:=SmallGroup(320,1030);
// by ID
G=gap.SmallGroup(320,1030);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,184,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=a^3,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations