Copied to
clipboard

G = C5⋊C88D4order 320 = 26·5

1st semidirect product of C5⋊C8 and D4 acting through Inn(C5⋊C8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5⋊C88D4, C5⋊D4⋊C8, C51(C8×D4), Dic5⋊(C2×C8), C2.1(D4×F5), D101(C2×C8), C10.1(C4×D4), C22⋊C4.8F5, C221(D5⋊C8), C10.2(C8○D4), C10.5(C22×C8), D10⋊C811C2, C2.2(D4.F5), C23.24(C2×F5), D10⋊C4.5C4, Dic5.65(C2×D4), C10.D4.6C4, C23.2F53C2, Dic5⋊C812C2, Dic5.50(C4○D4), Dic54D4.10C2, C22.34(C22×F5), (C2×Dic5).322C23, (C4×Dic5).247C22, (C22×Dic5).177C22, (C4×C5⋊C8)⋊11C2, (C2×C10)⋊1(C2×C8), (C2×D5⋊C8)⋊8C2, (C22×C5⋊C8)⋊1C2, C2.7(C2×D5⋊C8), (C2×C5⋊D4).3C4, (C2×C4).57(C2×F5), (C2×C20).90(C2×C4), (C5×C22⋊C4).8C4, (C2×C5⋊C8).20C22, (C2×C4×D5).286C22, (C2×C10).30(C22×C4), (C22×C10).13(C2×C4), (C2×Dic5).47(C2×C4), (C22×D5).39(C2×C4), SmallGroup(320,1030)

Series: Derived Chief Lower central Upper central

C1C10 — C5⋊C88D4
C1C5C10Dic5C2×Dic5C2×C5⋊C8C22×C5⋊C8 — C5⋊C88D4
C5C10 — C5⋊C88D4
C1C22C22⋊C4

Generators and relations for C5⋊C88D4
 G = < a,b,c,d | a5=b8=c4=d2=1, bab-1=a3, cac-1=a-1, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 442 in 134 conjugacy classes, 56 normal (42 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×D4, Dic5, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C5⋊C8, C5⋊C8, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×C10, C8×D4, C4×Dic5, C10.D4, D10⋊C4, C5×C22⋊C4, D5⋊C8, C2×C5⋊C8, C2×C5⋊C8, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C4×C5⋊C8, D10⋊C8, Dic5⋊C8, C23.2F5, Dic54D4, C2×D5⋊C8, C22×C5⋊C8, C5⋊C88D4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C2×C8, C22×C4, C2×D4, C4○D4, F5, C4×D4, C22×C8, C8○D4, C2×F5, C8×D4, D5⋊C8, C22×F5, C2×D5⋊C8, D4.F5, D4×F5, C5⋊C88D4

Smallest permutation representation of C5⋊C88D4
On 160 points
Generators in S160
(1 147 132 143 113)(2 144 148 114 133)(3 115 137 134 149)(4 135 116 150 138)(5 151 136 139 117)(6 140 152 118 129)(7 119 141 130 145)(8 131 120 146 142)(9 27 81 111 39)(10 112 28 40 82)(11 33 105 83 29)(12 84 34 30 106)(13 31 85 107 35)(14 108 32 36 86)(15 37 109 87 25)(16 88 38 26 110)(17 55 128 103 70)(18 104 56 71 121)(19 72 97 122 49)(20 123 65 50 98)(21 51 124 99 66)(22 100 52 67 125)(23 68 101 126 53)(24 127 69 54 102)(41 89 73 63 157)(42 64 90 158 74)(43 159 57 75 91)(44 76 160 92 58)(45 93 77 59 153)(46 60 94 154 78)(47 155 61 79 95)(48 80 156 96 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 83 57 71)(2 84 58 72)(3 85 59 65)(4 86 60 66)(5 87 61 67)(6 88 62 68)(7 81 63 69)(8 82 64 70)(9 41 24 141)(10 42 17 142)(11 43 18 143)(12 44 19 144)(13 45 20 137)(14 46 21 138)(15 47 22 139)(16 48 23 140)(25 155 125 117)(26 156 126 118)(27 157 127 119)(28 158 128 120)(29 159 121 113)(30 160 122 114)(31 153 123 115)(32 154 124 116)(33 91 104 132)(34 92 97 133)(35 93 98 134)(36 94 99 135)(37 95 100 136)(38 96 101 129)(39 89 102 130)(40 90 103 131)(49 148 106 76)(50 149 107 77)(51 150 108 78)(52 151 109 79)(53 152 110 80)(54 145 111 73)(55 146 112 74)(56 147 105 75)
(1 71)(2 72)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 89)(10 90)(11 91)(12 92)(13 93)(14 94)(15 95)(16 96)(17 131)(18 132)(19 133)(20 134)(21 135)(22 136)(23 129)(24 130)(25 79)(26 80)(27 73)(28 74)(29 75)(30 76)(31 77)(32 78)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 41)(40 42)(49 114)(50 115)(51 116)(52 117)(53 118)(54 119)(55 120)(56 113)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 81)(64 82)(97 144)(98 137)(99 138)(100 139)(101 140)(102 141)(103 142)(104 143)(105 159)(106 160)(107 153)(108 154)(109 155)(110 156)(111 157)(112 158)(121 147)(122 148)(123 149)(124 150)(125 151)(126 152)(127 145)(128 146)

G:=sub<Sym(160)| (1,147,132,143,113)(2,144,148,114,133)(3,115,137,134,149)(4,135,116,150,138)(5,151,136,139,117)(6,140,152,118,129)(7,119,141,130,145)(8,131,120,146,142)(9,27,81,111,39)(10,112,28,40,82)(11,33,105,83,29)(12,84,34,30,106)(13,31,85,107,35)(14,108,32,36,86)(15,37,109,87,25)(16,88,38,26,110)(17,55,128,103,70)(18,104,56,71,121)(19,72,97,122,49)(20,123,65,50,98)(21,51,124,99,66)(22,100,52,67,125)(23,68,101,126,53)(24,127,69,54,102)(41,89,73,63,157)(42,64,90,158,74)(43,159,57,75,91)(44,76,160,92,58)(45,93,77,59,153)(46,60,94,154,78)(47,155,61,79,95)(48,80,156,96,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,83,57,71)(2,84,58,72)(3,85,59,65)(4,86,60,66)(5,87,61,67)(6,88,62,68)(7,81,63,69)(8,82,64,70)(9,41,24,141)(10,42,17,142)(11,43,18,143)(12,44,19,144)(13,45,20,137)(14,46,21,138)(15,47,22,139)(16,48,23,140)(25,155,125,117)(26,156,126,118)(27,157,127,119)(28,158,128,120)(29,159,121,113)(30,160,122,114)(31,153,123,115)(32,154,124,116)(33,91,104,132)(34,92,97,133)(35,93,98,134)(36,94,99,135)(37,95,100,136)(38,96,101,129)(39,89,102,130)(40,90,103,131)(49,148,106,76)(50,149,107,77)(51,150,108,78)(52,151,109,79)(53,152,110,80)(54,145,111,73)(55,146,112,74)(56,147,105,75), (1,71)(2,72)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,79)(26,80)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,113)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,81)(64,82)(97,144)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,159)(106,160)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,145)(128,146)>;

G:=Group( (1,147,132,143,113)(2,144,148,114,133)(3,115,137,134,149)(4,135,116,150,138)(5,151,136,139,117)(6,140,152,118,129)(7,119,141,130,145)(8,131,120,146,142)(9,27,81,111,39)(10,112,28,40,82)(11,33,105,83,29)(12,84,34,30,106)(13,31,85,107,35)(14,108,32,36,86)(15,37,109,87,25)(16,88,38,26,110)(17,55,128,103,70)(18,104,56,71,121)(19,72,97,122,49)(20,123,65,50,98)(21,51,124,99,66)(22,100,52,67,125)(23,68,101,126,53)(24,127,69,54,102)(41,89,73,63,157)(42,64,90,158,74)(43,159,57,75,91)(44,76,160,92,58)(45,93,77,59,153)(46,60,94,154,78)(47,155,61,79,95)(48,80,156,96,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,83,57,71)(2,84,58,72)(3,85,59,65)(4,86,60,66)(5,87,61,67)(6,88,62,68)(7,81,63,69)(8,82,64,70)(9,41,24,141)(10,42,17,142)(11,43,18,143)(12,44,19,144)(13,45,20,137)(14,46,21,138)(15,47,22,139)(16,48,23,140)(25,155,125,117)(26,156,126,118)(27,157,127,119)(28,158,128,120)(29,159,121,113)(30,160,122,114)(31,153,123,115)(32,154,124,116)(33,91,104,132)(34,92,97,133)(35,93,98,134)(36,94,99,135)(37,95,100,136)(38,96,101,129)(39,89,102,130)(40,90,103,131)(49,148,106,76)(50,149,107,77)(51,150,108,78)(52,151,109,79)(53,152,110,80)(54,145,111,73)(55,146,112,74)(56,147,105,75), (1,71)(2,72)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,89)(10,90)(11,91)(12,92)(13,93)(14,94)(15,95)(16,96)(17,131)(18,132)(19,133)(20,134)(21,135)(22,136)(23,129)(24,130)(25,79)(26,80)(27,73)(28,74)(29,75)(30,76)(31,77)(32,78)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,113)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,81)(64,82)(97,144)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,159)(106,160)(107,153)(108,154)(109,155)(110,156)(111,157)(112,158)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,145)(128,146) );

G=PermutationGroup([[(1,147,132,143,113),(2,144,148,114,133),(3,115,137,134,149),(4,135,116,150,138),(5,151,136,139,117),(6,140,152,118,129),(7,119,141,130,145),(8,131,120,146,142),(9,27,81,111,39),(10,112,28,40,82),(11,33,105,83,29),(12,84,34,30,106),(13,31,85,107,35),(14,108,32,36,86),(15,37,109,87,25),(16,88,38,26,110),(17,55,128,103,70),(18,104,56,71,121),(19,72,97,122,49),(20,123,65,50,98),(21,51,124,99,66),(22,100,52,67,125),(23,68,101,126,53),(24,127,69,54,102),(41,89,73,63,157),(42,64,90,158,74),(43,159,57,75,91),(44,76,160,92,58),(45,93,77,59,153),(46,60,94,154,78),(47,155,61,79,95),(48,80,156,96,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,83,57,71),(2,84,58,72),(3,85,59,65),(4,86,60,66),(5,87,61,67),(6,88,62,68),(7,81,63,69),(8,82,64,70),(9,41,24,141),(10,42,17,142),(11,43,18,143),(12,44,19,144),(13,45,20,137),(14,46,21,138),(15,47,22,139),(16,48,23,140),(25,155,125,117),(26,156,126,118),(27,157,127,119),(28,158,128,120),(29,159,121,113),(30,160,122,114),(31,153,123,115),(32,154,124,116),(33,91,104,132),(34,92,97,133),(35,93,98,134),(36,94,99,135),(37,95,100,136),(38,96,101,129),(39,89,102,130),(40,90,103,131),(49,148,106,76),(50,149,107,77),(51,150,108,78),(52,151,109,79),(53,152,110,80),(54,145,111,73),(55,146,112,74),(56,147,105,75)], [(1,71),(2,72),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,89),(10,90),(11,91),(12,92),(13,93),(14,94),(15,95),(16,96),(17,131),(18,132),(19,133),(20,134),(21,135),(22,136),(23,129),(24,130),(25,79),(26,80),(27,73),(28,74),(29,75),(30,76),(31,77),(32,78),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,41),(40,42),(49,114),(50,115),(51,116),(52,117),(53,118),(54,119),(55,120),(56,113),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,81),(64,82),(97,144),(98,137),(99,138),(100,139),(101,140),(102,141),(103,142),(104,143),(105,159),(106,160),(107,153),(108,154),(109,155),(110,156),(111,157),(112,158),(121,147),(122,148),(123,149),(124,150),(125,151),(126,152),(127,145),(128,146)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L 5 8A···8H8I···8T10A10B10C10D10E20A20B20C20D
order1222222244444444444458···88···8101010101020202020
size1111221010222255551010101045···510···10444888888

50 irreducible representations

dim1111111111111222444488
type++++++++++++-+
imageC1C2C2C2C2C2C2C2C4C4C4C4C8D4C4○D4C8○D4F5C2×F5C2×F5D5⋊C8D4.F5D4×F5
kernelC5⋊C88D4C4×C5⋊C8D10⋊C8Dic5⋊C8C23.2F5Dic54D4C2×D5⋊C8C22×C5⋊C8C10.D4D10⋊C4C5×C22⋊C4C2×C5⋊D4C5⋊D4C5⋊C8Dic5C10C22⋊C4C2×C4C23C22C2C2
# reps11111111222216224121411

Matrix representation of C5⋊C88D4 in GL6(𝔽41)

100000
010000
0000040
0010040
0001040
0000140
,
900000
090000
001902221
00021140
002040121
002021220
,
010000
4000000
0040100
000100
0001040
0001400
,
010000
100000
0040000
0004000
0000400
0000040

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,19,0,20,20,0,0,0,21,40,21,0,0,22,1,1,22,0,0,21,40,21,0],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,1,1,1,1,0,0,0,0,0,40,0,0,0,0,40,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40] >;

C5⋊C88D4 in GAP, Magma, Sage, TeX

C_5\rtimes C_8\rtimes_8D_4
% in TeX

G:=Group("C5:C8:8D4");
// GroupNames label

G:=SmallGroup(320,1030);
// by ID

G=gap.SmallGroup(320,1030);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,219,184,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^4=d^2=1,b*a*b^-1=a^3,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽