Copied to
clipboard

G = (C2×D4).7F5order 320 = 26·5

4th non-split extension by C2×D4 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×D4).7F5, (D4×C10).5C4, D10⋊C83C2, C23.13(C2×F5), C10.17(C8○D4), (C2×Dic10).9C4, C2.17(D4.F5), Dic5.109(C2×D4), (C2×Dic5).119D4, C23.2F511C2, C22.2(C22⋊F5), C22.93(C22×F5), Dic5.11(C22⋊C4), (C2×Dic5).354C23, (C22×Dic5).187C22, (C22×C5⋊C8)⋊6C2, (C2×C5⋊D4).7C4, (C2×C4).37(C2×F5), (C2×C20).24(C2×C4), (C2×C5⋊C8).11C22, (C2×C4×D5).60C22, (C2×C22.F5)⋊6C2, C2.20(C2×C22⋊F5), C51((C22×C8)⋊C2), (C2×D42D5).7C2, C10.19(C2×C22⋊C4), (C2×C10).2(C22⋊C4), (C2×C10).78(C22×C4), (C22×C10).26(C2×C4), (C2×Dic5).73(C2×C4), (C22×D5).55(C2×C4), SmallGroup(320,1113)

Series: Derived Chief Lower central Upper central

C1C2×C10 — (C2×D4).7F5
C1C5C10Dic5C2×Dic5C2×C5⋊C8C22×C5⋊C8 — (C2×D4).7F5
C5C2×C10 — (C2×D4).7F5
C1C22C2×D4

Generators and relations for (C2×D4).7F5
 G = < a,b,c,d,e | a2=b4=c2=d5=1, e4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe-1=ab-1, cd=dc, ce=ec, ede-1=d3 >

Subgroups: 586 in 158 conjugacy classes, 52 normal (30 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C2×C8, M4(2), C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C22⋊C8, C22×C8, C2×M4(2), C2×C4○D4, C5⋊C8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, (C22×C8)⋊C2, C2×C5⋊C8, C2×C5⋊C8, C22.F5, C2×Dic10, C2×C4×D5, D42D5, C22×Dic5, C2×C5⋊D4, D4×C10, D10⋊C8, C23.2F5, C22×C5⋊C8, C2×C22.F5, C2×D42D5, (C2×D4).7F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, F5, C2×C22⋊C4, C8○D4, C2×F5, (C22×C8)⋊C2, C22⋊F5, C22×F5, D4.F5, C2×C22⋊F5, (C2×D4).7F5

Smallest permutation representation of (C2×D4).7F5
On 160 points
Generators in S160
(1 141)(2 142)(3 143)(4 144)(5 137)(6 138)(7 139)(8 140)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)(25 147)(26 148)(27 149)(28 150)(29 151)(30 152)(31 145)(32 146)(33 98)(34 99)(35 100)(36 101)(37 102)(38 103)(39 104)(40 97)(41 52)(42 53)(43 54)(44 55)(45 56)(46 49)(47 50)(48 51)(57 105)(58 106)(59 107)(60 108)(61 109)(62 110)(63 111)(64 112)(65 136)(66 129)(67 130)(68 131)(69 132)(70 133)(71 134)(72 135)(73 94)(74 95)(75 96)(76 89)(77 90)(78 91)(79 92)(80 93)(81 122)(82 123)(83 124)(84 125)(85 126)(86 127)(87 128)(88 121)(113 155)(114 156)(115 157)(116 158)(117 159)(118 160)(119 153)(120 154)
(1 7 5 3)(2 144 6 140)(4 138 8 142)(9 17 13 21)(10 12 14 16)(11 19 15 23)(18 20 22 24)(25 104 29 100)(26 36 30 40)(27 98 31 102)(28 38 32 34)(33 145 37 149)(35 147 39 151)(41 69 45 65)(42 129 46 133)(43 71 47 67)(44 131 48 135)(49 70 53 66)(50 130 54 134)(51 72 55 68)(52 132 56 136)(57 127 61 123)(58 83 62 87)(59 121 63 125)(60 85 64 81)(73 155 77 159)(74 118 78 114)(75 157 79 153)(76 120 80 116)(82 105 86 109)(84 107 88 111)(89 154 93 158)(90 117 94 113)(91 156 95 160)(92 119 96 115)(97 148 101 152)(99 150 103 146)(106 124 110 128)(108 126 112 122)(137 143 141 139)
(1 24)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 144)(10 137)(11 138)(12 139)(13 140)(14 141)(15 142)(16 143)(25 71)(26 72)(27 65)(28 66)(29 67)(30 68)(31 69)(32 70)(33 56)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 102)(42 103)(43 104)(44 97)(45 98)(46 99)(47 100)(48 101)(57 73)(58 74)(59 75)(60 76)(61 77)(62 78)(63 79)(64 80)(81 120)(82 113)(83 114)(84 115)(85 116)(86 117)(87 118)(88 119)(89 108)(90 109)(91 110)(92 111)(93 112)(94 105)(95 106)(96 107)(121 153)(122 154)(123 155)(124 156)(125 157)(126 158)(127 159)(128 160)(129 150)(130 151)(131 152)(132 145)(133 146)(134 147)(135 148)(136 149)
(1 92 132 50 113)(2 51 93 114 133)(3 115 52 134 94)(4 135 116 95 53)(5 96 136 54 117)(6 55 89 118 129)(7 119 56 130 90)(8 131 120 91 49)(9 26 126 58 103)(10 59 27 104 127)(11 97 60 128 28)(12 121 98 29 61)(13 30 122 62 99)(14 63 31 100 123)(15 101 64 124 32)(16 125 102 25 57)(17 36 112 83 146)(18 84 37 147 105)(19 148 85 106 38)(20 107 149 39 86)(21 40 108 87 150)(22 88 33 151 109)(23 152 81 110 34)(24 111 145 35 82)(41 71 73 143 157)(42 144 72 158 74)(43 159 137 75 65)(44 76 160 66 138)(45 67 77 139 153)(46 140 68 154 78)(47 155 141 79 69)(48 80 156 70 142)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,141)(2,142)(3,143)(4,144)(5,137)(6,138)(7,139)(8,140)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,145)(32,146)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,97)(41,52)(42,53)(43,54)(44,55)(45,56)(46,49)(47,50)(48,51)(57,105)(58,106)(59,107)(60,108)(61,109)(62,110)(63,111)(64,112)(65,136)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,94)(74,95)(75,96)(76,89)(77,90)(78,91)(79,92)(80,93)(81,122)(82,123)(83,124)(84,125)(85,126)(86,127)(87,128)(88,121)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,153)(120,154), (1,7,5,3)(2,144,6,140)(4,138,8,142)(9,17,13,21)(10,12,14,16)(11,19,15,23)(18,20,22,24)(25,104,29,100)(26,36,30,40)(27,98,31,102)(28,38,32,34)(33,145,37,149)(35,147,39,151)(41,69,45,65)(42,129,46,133)(43,71,47,67)(44,131,48,135)(49,70,53,66)(50,130,54,134)(51,72,55,68)(52,132,56,136)(57,127,61,123)(58,83,62,87)(59,121,63,125)(60,85,64,81)(73,155,77,159)(74,118,78,114)(75,157,79,153)(76,120,80,116)(82,105,86,109)(84,107,88,111)(89,154,93,158)(90,117,94,113)(91,156,95,160)(92,119,96,115)(97,148,101,152)(99,150,103,146)(106,124,110,128)(108,126,112,122)(137,143,141,139), (1,24)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,144)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(25,71)(26,72)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,56)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,102)(42,103)(43,104)(44,97)(45,98)(46,99)(47,100)(48,101)(57,73)(58,74)(59,75)(60,76)(61,77)(62,78)(63,79)(64,80)(81,120)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,108)(90,109)(91,110)(92,111)(93,112)(94,105)(95,106)(96,107)(121,153)(122,154)(123,155)(124,156)(125,157)(126,158)(127,159)(128,160)(129,150)(130,151)(131,152)(132,145)(133,146)(134,147)(135,148)(136,149), (1,92,132,50,113)(2,51,93,114,133)(3,115,52,134,94)(4,135,116,95,53)(5,96,136,54,117)(6,55,89,118,129)(7,119,56,130,90)(8,131,120,91,49)(9,26,126,58,103)(10,59,27,104,127)(11,97,60,128,28)(12,121,98,29,61)(13,30,122,62,99)(14,63,31,100,123)(15,101,64,124,32)(16,125,102,25,57)(17,36,112,83,146)(18,84,37,147,105)(19,148,85,106,38)(20,107,149,39,86)(21,40,108,87,150)(22,88,33,151,109)(23,152,81,110,34)(24,111,145,35,82)(41,71,73,143,157)(42,144,72,158,74)(43,159,137,75,65)(44,76,160,66,138)(45,67,77,139,153)(46,140,68,154,78)(47,155,141,79,69)(48,80,156,70,142), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,141)(2,142)(3,143)(4,144)(5,137)(6,138)(7,139)(8,140)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,145)(32,146)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,97)(41,52)(42,53)(43,54)(44,55)(45,56)(46,49)(47,50)(48,51)(57,105)(58,106)(59,107)(60,108)(61,109)(62,110)(63,111)(64,112)(65,136)(66,129)(67,130)(68,131)(69,132)(70,133)(71,134)(72,135)(73,94)(74,95)(75,96)(76,89)(77,90)(78,91)(79,92)(80,93)(81,122)(82,123)(83,124)(84,125)(85,126)(86,127)(87,128)(88,121)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,153)(120,154), (1,7,5,3)(2,144,6,140)(4,138,8,142)(9,17,13,21)(10,12,14,16)(11,19,15,23)(18,20,22,24)(25,104,29,100)(26,36,30,40)(27,98,31,102)(28,38,32,34)(33,145,37,149)(35,147,39,151)(41,69,45,65)(42,129,46,133)(43,71,47,67)(44,131,48,135)(49,70,53,66)(50,130,54,134)(51,72,55,68)(52,132,56,136)(57,127,61,123)(58,83,62,87)(59,121,63,125)(60,85,64,81)(73,155,77,159)(74,118,78,114)(75,157,79,153)(76,120,80,116)(82,105,86,109)(84,107,88,111)(89,154,93,158)(90,117,94,113)(91,156,95,160)(92,119,96,115)(97,148,101,152)(99,150,103,146)(106,124,110,128)(108,126,112,122)(137,143,141,139), (1,24)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,144)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(25,71)(26,72)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,56)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,102)(42,103)(43,104)(44,97)(45,98)(46,99)(47,100)(48,101)(57,73)(58,74)(59,75)(60,76)(61,77)(62,78)(63,79)(64,80)(81,120)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,108)(90,109)(91,110)(92,111)(93,112)(94,105)(95,106)(96,107)(121,153)(122,154)(123,155)(124,156)(125,157)(126,158)(127,159)(128,160)(129,150)(130,151)(131,152)(132,145)(133,146)(134,147)(135,148)(136,149), (1,92,132,50,113)(2,51,93,114,133)(3,115,52,134,94)(4,135,116,95,53)(5,96,136,54,117)(6,55,89,118,129)(7,119,56,130,90)(8,131,120,91,49)(9,26,126,58,103)(10,59,27,104,127)(11,97,60,128,28)(12,121,98,29,61)(13,30,122,62,99)(14,63,31,100,123)(15,101,64,124,32)(16,125,102,25,57)(17,36,112,83,146)(18,84,37,147,105)(19,148,85,106,38)(20,107,149,39,86)(21,40,108,87,150)(22,88,33,151,109)(23,152,81,110,34)(24,111,145,35,82)(41,71,73,143,157)(42,144,72,158,74)(43,159,137,75,65)(44,76,160,66,138)(45,67,77,139,153)(46,140,68,154,78)(47,155,141,79,69)(48,80,156,70,142), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,141),(2,142),(3,143),(4,144),(5,137),(6,138),(7,139),(8,140),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18),(25,147),(26,148),(27,149),(28,150),(29,151),(30,152),(31,145),(32,146),(33,98),(34,99),(35,100),(36,101),(37,102),(38,103),(39,104),(40,97),(41,52),(42,53),(43,54),(44,55),(45,56),(46,49),(47,50),(48,51),(57,105),(58,106),(59,107),(60,108),(61,109),(62,110),(63,111),(64,112),(65,136),(66,129),(67,130),(68,131),(69,132),(70,133),(71,134),(72,135),(73,94),(74,95),(75,96),(76,89),(77,90),(78,91),(79,92),(80,93),(81,122),(82,123),(83,124),(84,125),(85,126),(86,127),(87,128),(88,121),(113,155),(114,156),(115,157),(116,158),(117,159),(118,160),(119,153),(120,154)], [(1,7,5,3),(2,144,6,140),(4,138,8,142),(9,17,13,21),(10,12,14,16),(11,19,15,23),(18,20,22,24),(25,104,29,100),(26,36,30,40),(27,98,31,102),(28,38,32,34),(33,145,37,149),(35,147,39,151),(41,69,45,65),(42,129,46,133),(43,71,47,67),(44,131,48,135),(49,70,53,66),(50,130,54,134),(51,72,55,68),(52,132,56,136),(57,127,61,123),(58,83,62,87),(59,121,63,125),(60,85,64,81),(73,155,77,159),(74,118,78,114),(75,157,79,153),(76,120,80,116),(82,105,86,109),(84,107,88,111),(89,154,93,158),(90,117,94,113),(91,156,95,160),(92,119,96,115),(97,148,101,152),(99,150,103,146),(106,124,110,128),(108,126,112,122),(137,143,141,139)], [(1,24),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,144),(10,137),(11,138),(12,139),(13,140),(14,141),(15,142),(16,143),(25,71),(26,72),(27,65),(28,66),(29,67),(30,68),(31,69),(32,70),(33,56),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,102),(42,103),(43,104),(44,97),(45,98),(46,99),(47,100),(48,101),(57,73),(58,74),(59,75),(60,76),(61,77),(62,78),(63,79),(64,80),(81,120),(82,113),(83,114),(84,115),(85,116),(86,117),(87,118),(88,119),(89,108),(90,109),(91,110),(92,111),(93,112),(94,105),(95,106),(96,107),(121,153),(122,154),(123,155),(124,156),(125,157),(126,158),(127,159),(128,160),(129,150),(130,151),(131,152),(132,145),(133,146),(134,147),(135,148),(136,149)], [(1,92,132,50,113),(2,51,93,114,133),(3,115,52,134,94),(4,135,116,95,53),(5,96,136,54,117),(6,55,89,118,129),(7,119,56,130,90),(8,131,120,91,49),(9,26,126,58,103),(10,59,27,104,127),(11,97,60,128,28),(12,121,98,29,61),(13,30,122,62,99),(14,63,31,100,123),(15,101,64,124,32),(16,125,102,25,57),(17,36,112,83,146),(18,84,37,147,105),(19,148,85,106,38),(20,107,149,39,86),(21,40,108,87,150),(22,88,33,151,109),(23,152,81,110,34),(24,111,145,35,82),(41,71,73,143,157),(42,144,72,158,74),(43,159,137,75,65),(44,76,160,66,138),(45,67,77,139,153),(46,140,68,154,78),(47,155,141,79,69),(48,80,156,70,142)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H 5 8A···8H8I8J8K8L10A10B10C10D10E10F10G20A20B
order122222224444444458···88888101010101010102020
size11112242045555101020410···1020202020444888888

38 irreducible representations

dim1111111112244448
type+++++++++++-
imageC1C2C2C2C2C2C4C4C4D4C8○D4F5C2×F5C2×F5C22⋊F5D4.F5
kernel(C2×D4).7F5D10⋊C8C23.2F5C22×C5⋊C8C2×C22.F5C2×D42D5C2×Dic10C2×C5⋊D4D4×C10C2×Dic5C10C2×D4C2×C4C23C22C2
# reps1221112424811242

Matrix representation of (C2×D4).7F5 in GL6(𝔽41)

4000000
0400000
0040000
0004000
0000400
0000040
,
3200000
1690000
001903838
0032230
0003223
003838019
,
4040000
010000
0040000
0004000
0000400
0000040
,
100000
010000
0040404040
001000
000100
000010
,
300000
030000
001734304
003711724
0037133026
0017132824

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[32,16,0,0,0,0,0,9,0,0,0,0,0,0,19,3,0,38,0,0,0,22,3,38,0,0,38,3,22,0,0,0,38,0,3,19],[40,0,0,0,0,0,4,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,40,0,1,0,0,0,40,0,0,1,0,0,40,0,0,0],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,17,37,37,17,0,0,34,11,13,13,0,0,30,7,30,28,0,0,4,24,26,24] >;

(C2×D4).7F5 in GAP, Magma, Sage, TeX

(C_2\times D_4)._7F_5
% in TeX

G:=Group("(C2xD4).7F5");
// GroupNames label

G:=SmallGroup(320,1113);
// by ID

G=gap.SmallGroup(320,1113);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=1,e^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=a*b^-1,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽