Copied to
clipboard

G = D102M4(2)  order 320 = 26·5

2nd semidirect product of D10 and M4(2) acting via M4(2)/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D102M4(2), C5⋊C86D4, C4⋊C4.5F5, C53(C89D4), C10.9(C4×D4), C2.11(D4×F5), (C2×D20).8C4, D10⋊C89C2, C2.4(Q8.F5), Dic5⋊C82C2, D10⋊C4.9C4, C10.20(C8○D4), Dic5.70(C2×D4), D208C4.17C2, C10.C423C2, C10.13(C2×M4(2)), Dic5.55(C4○D4), C22.76(C22×F5), C2.13(D5⋊M4(2)), (C4×Dic5).68C22, (C2×Dic5).331C23, (C5×C4⋊C4).8C4, (C2×D5⋊C8)⋊11C2, (C2×C4.F5)⋊11C2, (C2×C4).25(C2×F5), (C2×C20).22(C2×C4), (C2×C5⋊C8).28C22, (C2×C4×D5).290C22, (C2×C10).42(C22×C4), (C2×Dic5).57(C2×C4), (C22×D5).48(C2×C4), SmallGroup(320,1042)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D102M4(2)
C1C5C10Dic5C2×Dic5C2×C5⋊C8C2×D5⋊C8 — D102M4(2)
C5C2×C10 — D102M4(2)
C1C22C4⋊C4

Generators and relations for D102M4(2)
 G = < a,b,c,d | a10=b2=c8=d2=1, bab=dad=a-1, cac-1=a7, cbc-1=ab, dbd=a3b, dcd=c5 >

Subgroups: 474 in 124 conjugacy classes, 46 normal (42 characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, Dic5, Dic5, C20, D10, D10, C2×C10, C8⋊C4, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C5⋊C8, C5⋊C8, C4×D5, D20, C2×Dic5, C2×C20, C22×D5, C89D4, C4×Dic5, D10⋊C4, C5×C4⋊C4, D5⋊C8, C4.F5, C2×C5⋊C8, C2×C4×D5, C2×D20, C10.C42, D10⋊C8, Dic5⋊C8, D208C4, C2×D5⋊C8, C2×C4.F5, D102M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5, C89D4, C22×F5, D5⋊M4(2), D4×F5, Q8.F5, D102M4(2)

Smallest permutation representation of D102M4(2)
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 73)(2 72)(3 71)(4 80)(5 79)(6 78)(7 77)(8 76)(9 75)(10 74)(11 107)(12 106)(13 105)(14 104)(15 103)(16 102)(17 101)(18 110)(19 109)(20 108)(21 85)(22 84)(23 83)(24 82)(25 81)(26 90)(27 89)(28 88)(29 87)(30 86)(31 63)(32 62)(33 61)(34 70)(35 69)(36 68)(37 67)(38 66)(39 65)(40 64)(41 58)(42 57)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 60)(50 59)(91 158)(92 157)(93 156)(94 155)(95 154)(96 153)(97 152)(98 151)(99 160)(100 159)(111 145)(112 144)(113 143)(114 142)(115 141)(116 150)(117 149)(118 148)(119 147)(120 146)(121 136)(122 135)(123 134)(124 133)(125 132)(126 131)(127 140)(128 139)(129 138)(130 137)
(1 112 34 105 21 130 44 98)(2 115 33 102 22 123 43 95)(3 118 32 109 23 126 42 92)(4 111 31 106 24 129 41 99)(5 114 40 103 25 122 50 96)(6 117 39 110 26 125 49 93)(7 120 38 107 27 128 48 100)(8 113 37 104 28 121 47 97)(9 116 36 101 29 124 46 94)(10 119 35 108 30 127 45 91)(11 82 131 60 159 80 148 65)(12 85 140 57 160 73 147 62)(13 88 139 54 151 76 146 69)(14 81 138 51 152 79 145 66)(15 84 137 58 153 72 144 63)(16 87 136 55 154 75 143 70)(17 90 135 52 155 78 142 67)(18 83 134 59 156 71 141 64)(19 86 133 56 157 74 150 61)(20 89 132 53 158 77 149 68)
(2 10)(3 9)(4 8)(5 7)(11 160)(12 159)(13 158)(14 157)(15 156)(16 155)(17 154)(18 153)(19 152)(20 151)(22 30)(23 29)(24 28)(25 27)(31 37)(32 36)(33 35)(38 40)(41 47)(42 46)(43 45)(48 50)(51 56)(52 55)(53 54)(57 60)(58 59)(61 66)(62 65)(63 64)(67 70)(68 69)(71 72)(73 80)(74 79)(75 78)(76 77)(81 86)(82 85)(83 84)(87 90)(88 89)(91 102)(92 101)(93 110)(94 109)(95 108)(96 107)(97 106)(98 105)(99 104)(100 103)(111 121)(112 130)(113 129)(114 128)(115 127)(116 126)(117 125)(118 124)(119 123)(120 122)(131 147)(132 146)(133 145)(134 144)(135 143)(136 142)(137 141)(138 150)(139 149)(140 148)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,73)(2,72)(3,71)(4,80)(5,79)(6,78)(7,77)(8,76)(9,75)(10,74)(11,107)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,110)(19,109)(20,108)(21,85)(22,84)(23,83)(24,82)(25,81)(26,90)(27,89)(28,88)(29,87)(30,86)(31,63)(32,62)(33,61)(34,70)(35,69)(36,68)(37,67)(38,66)(39,65)(40,64)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,60)(50,59)(91,158)(92,157)(93,156)(94,155)(95,154)(96,153)(97,152)(98,151)(99,160)(100,159)(111,145)(112,144)(113,143)(114,142)(115,141)(116,150)(117,149)(118,148)(119,147)(120,146)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,140)(128,139)(129,138)(130,137), (1,112,34,105,21,130,44,98)(2,115,33,102,22,123,43,95)(3,118,32,109,23,126,42,92)(4,111,31,106,24,129,41,99)(5,114,40,103,25,122,50,96)(6,117,39,110,26,125,49,93)(7,120,38,107,27,128,48,100)(8,113,37,104,28,121,47,97)(9,116,36,101,29,124,46,94)(10,119,35,108,30,127,45,91)(11,82,131,60,159,80,148,65)(12,85,140,57,160,73,147,62)(13,88,139,54,151,76,146,69)(14,81,138,51,152,79,145,66)(15,84,137,58,153,72,144,63)(16,87,136,55,154,75,143,70)(17,90,135,52,155,78,142,67)(18,83,134,59,156,71,141,64)(19,86,133,56,157,74,150,61)(20,89,132,53,158,77,149,68), (2,10)(3,9)(4,8)(5,7)(11,160)(12,159)(13,158)(14,157)(15,156)(16,155)(17,154)(18,153)(19,152)(20,151)(22,30)(23,29)(24,28)(25,27)(31,37)(32,36)(33,35)(38,40)(41,47)(42,46)(43,45)(48,50)(51,56)(52,55)(53,54)(57,60)(58,59)(61,66)(62,65)(63,64)(67,70)(68,69)(71,72)(73,80)(74,79)(75,78)(76,77)(81,86)(82,85)(83,84)(87,90)(88,89)(91,102)(92,101)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(111,121)(112,130)(113,129)(114,128)(115,127)(116,126)(117,125)(118,124)(119,123)(120,122)(131,147)(132,146)(133,145)(134,144)(135,143)(136,142)(137,141)(138,150)(139,149)(140,148)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,73)(2,72)(3,71)(4,80)(5,79)(6,78)(7,77)(8,76)(9,75)(10,74)(11,107)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,110)(19,109)(20,108)(21,85)(22,84)(23,83)(24,82)(25,81)(26,90)(27,89)(28,88)(29,87)(30,86)(31,63)(32,62)(33,61)(34,70)(35,69)(36,68)(37,67)(38,66)(39,65)(40,64)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,60)(50,59)(91,158)(92,157)(93,156)(94,155)(95,154)(96,153)(97,152)(98,151)(99,160)(100,159)(111,145)(112,144)(113,143)(114,142)(115,141)(116,150)(117,149)(118,148)(119,147)(120,146)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,140)(128,139)(129,138)(130,137), (1,112,34,105,21,130,44,98)(2,115,33,102,22,123,43,95)(3,118,32,109,23,126,42,92)(4,111,31,106,24,129,41,99)(5,114,40,103,25,122,50,96)(6,117,39,110,26,125,49,93)(7,120,38,107,27,128,48,100)(8,113,37,104,28,121,47,97)(9,116,36,101,29,124,46,94)(10,119,35,108,30,127,45,91)(11,82,131,60,159,80,148,65)(12,85,140,57,160,73,147,62)(13,88,139,54,151,76,146,69)(14,81,138,51,152,79,145,66)(15,84,137,58,153,72,144,63)(16,87,136,55,154,75,143,70)(17,90,135,52,155,78,142,67)(18,83,134,59,156,71,141,64)(19,86,133,56,157,74,150,61)(20,89,132,53,158,77,149,68), (2,10)(3,9)(4,8)(5,7)(11,160)(12,159)(13,158)(14,157)(15,156)(16,155)(17,154)(18,153)(19,152)(20,151)(22,30)(23,29)(24,28)(25,27)(31,37)(32,36)(33,35)(38,40)(41,47)(42,46)(43,45)(48,50)(51,56)(52,55)(53,54)(57,60)(58,59)(61,66)(62,65)(63,64)(67,70)(68,69)(71,72)(73,80)(74,79)(75,78)(76,77)(81,86)(82,85)(83,84)(87,90)(88,89)(91,102)(92,101)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(111,121)(112,130)(113,129)(114,128)(115,127)(116,126)(117,125)(118,124)(119,123)(120,122)(131,147)(132,146)(133,145)(134,144)(135,143)(136,142)(137,141)(138,150)(139,149)(140,148) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,73),(2,72),(3,71),(4,80),(5,79),(6,78),(7,77),(8,76),(9,75),(10,74),(11,107),(12,106),(13,105),(14,104),(15,103),(16,102),(17,101),(18,110),(19,109),(20,108),(21,85),(22,84),(23,83),(24,82),(25,81),(26,90),(27,89),(28,88),(29,87),(30,86),(31,63),(32,62),(33,61),(34,70),(35,69),(36,68),(37,67),(38,66),(39,65),(40,64),(41,58),(42,57),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,60),(50,59),(91,158),(92,157),(93,156),(94,155),(95,154),(96,153),(97,152),(98,151),(99,160),(100,159),(111,145),(112,144),(113,143),(114,142),(115,141),(116,150),(117,149),(118,148),(119,147),(120,146),(121,136),(122,135),(123,134),(124,133),(125,132),(126,131),(127,140),(128,139),(129,138),(130,137)], [(1,112,34,105,21,130,44,98),(2,115,33,102,22,123,43,95),(3,118,32,109,23,126,42,92),(4,111,31,106,24,129,41,99),(5,114,40,103,25,122,50,96),(6,117,39,110,26,125,49,93),(7,120,38,107,27,128,48,100),(8,113,37,104,28,121,47,97),(9,116,36,101,29,124,46,94),(10,119,35,108,30,127,45,91),(11,82,131,60,159,80,148,65),(12,85,140,57,160,73,147,62),(13,88,139,54,151,76,146,69),(14,81,138,51,152,79,145,66),(15,84,137,58,153,72,144,63),(16,87,136,55,154,75,143,70),(17,90,135,52,155,78,142,67),(18,83,134,59,156,71,141,64),(19,86,133,56,157,74,150,61),(20,89,132,53,158,77,149,68)], [(2,10),(3,9),(4,8),(5,7),(11,160),(12,159),(13,158),(14,157),(15,156),(16,155),(17,154),(18,153),(19,152),(20,151),(22,30),(23,29),(24,28),(25,27),(31,37),(32,36),(33,35),(38,40),(41,47),(42,46),(43,45),(48,50),(51,56),(52,55),(53,54),(57,60),(58,59),(61,66),(62,65),(63,64),(67,70),(68,69),(71,72),(73,80),(74,79),(75,78),(76,77),(81,86),(82,85),(83,84),(87,90),(88,89),(91,102),(92,101),(93,110),(94,109),(95,108),(96,107),(97,106),(98,105),(99,104),(100,103),(111,121),(112,130),(113,129),(114,128),(115,127),(116,126),(117,125),(118,124),(119,123),(120,122),(131,147),(132,146),(133,145),(134,144),(135,143),(136,142),(137,141),(138,150),(139,149),(140,148)]])

38 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I 5 8A···8H8I8J8K8L10A10B10C20A···20F
order122222244444444458···8888810101020···20
size11111010202244555520410···10202020204448···8

38 irreducible representations

dim1111111111222244488
type++++++++++++
imageC1C2C2C2C2C2C2C4C4C4D4C4○D4M4(2)C8○D4F5C2×F5D5⋊M4(2)D4×F5Q8.F5
kernelD102M4(2)C10.C42D10⋊C8Dic5⋊C8D208C4C2×D5⋊C8C2×C4.F5D10⋊C4C5×C4⋊C4C2×D20C5⋊C8Dic5D10C10C4⋊C4C2×C4C2C2C2
# reps1121111422224413411

Matrix representation of D102M4(2) in GL6(𝔽41)

4000000
0400000
0000401
0000400
0010400
0001400
,
0400000
4000000
003822193
00190223
00383220
00031922
,
4000000
010000
00191111
0012181220
0021292329
0030303240
,
100000
0400000
000001
000010
000100
001000

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40,0,0,1,0,0,0],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,38,19,38,0,0,0,22,0,3,3,0,0,19,22,22,19,0,0,3,3,0,22],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,21,30,0,0,9,18,29,30,0,0,11,12,23,32,0,0,11,20,29,40],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0] >;

D102M4(2) in GAP, Magma, Sage, TeX

D_{10}\rtimes_2M_4(2)
% in TeX

G:=Group("D10:2M4(2)");
// GroupNames label

G:=SmallGroup(320,1042);
// by ID

G=gap.SmallGroup(320,1042);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,758,219,184,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^8=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^7,c*b*c^-1=a*b,d*b*d=a^3*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽