metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D10⋊2M4(2), C5⋊C8⋊6D4, C4⋊C4.5F5, C5⋊3(C8⋊9D4), C10.9(C4×D4), C2.11(D4×F5), (C2×D20).8C4, D10⋊C8⋊9C2, C2.4(Q8.F5), Dic5⋊C8⋊2C2, D10⋊C4.9C4, C10.20(C8○D4), Dic5.70(C2×D4), D20⋊8C4.17C2, C10.C42⋊3C2, C10.13(C2×M4(2)), Dic5.55(C4○D4), C22.76(C22×F5), C2.13(D5⋊M4(2)), (C4×Dic5).68C22, (C2×Dic5).331C23, (C5×C4⋊C4).8C4, (C2×D5⋊C8)⋊11C2, (C2×C4.F5)⋊11C2, (C2×C4).25(C2×F5), (C2×C20).22(C2×C4), (C2×C5⋊C8).28C22, (C2×C4×D5).290C22, (C2×C10).42(C22×C4), (C2×Dic5).57(C2×C4), (C22×D5).48(C2×C4), SmallGroup(320,1042)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C2×Dic5 — C2×C5⋊C8 — C2×D5⋊C8 — D10⋊2M4(2) |
Generators and relations for D10⋊2M4(2)
G = < a,b,c,d | a10=b2=c8=d2=1, bab=dad=a-1, cac-1=a7, cbc-1=ab, dbd=a3b, dcd=c5 >
Subgroups: 474 in 124 conjugacy classes, 46 normal (42 characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, Dic5, Dic5, C20, D10, D10, C2×C10, C8⋊C4, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), C5⋊C8, C5⋊C8, C4×D5, D20, C2×Dic5, C2×C20, C22×D5, C8⋊9D4, C4×Dic5, D10⋊C4, C5×C4⋊C4, D5⋊C8, C4.F5, C2×C5⋊C8, C2×C4×D5, C2×D20, C10.C42, D10⋊C8, Dic5⋊C8, D20⋊8C4, C2×D5⋊C8, C2×C4.F5, D10⋊2M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, M4(2), C22×C4, C2×D4, C4○D4, F5, C4×D4, C2×M4(2), C8○D4, C2×F5, C8⋊9D4, C22×F5, D5⋊M4(2), D4×F5, Q8.F5, D10⋊2M4(2)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 73)(2 72)(3 71)(4 80)(5 79)(6 78)(7 77)(8 76)(9 75)(10 74)(11 107)(12 106)(13 105)(14 104)(15 103)(16 102)(17 101)(18 110)(19 109)(20 108)(21 85)(22 84)(23 83)(24 82)(25 81)(26 90)(27 89)(28 88)(29 87)(30 86)(31 63)(32 62)(33 61)(34 70)(35 69)(36 68)(37 67)(38 66)(39 65)(40 64)(41 58)(42 57)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 60)(50 59)(91 158)(92 157)(93 156)(94 155)(95 154)(96 153)(97 152)(98 151)(99 160)(100 159)(111 145)(112 144)(113 143)(114 142)(115 141)(116 150)(117 149)(118 148)(119 147)(120 146)(121 136)(122 135)(123 134)(124 133)(125 132)(126 131)(127 140)(128 139)(129 138)(130 137)
(1 112 34 105 21 130 44 98)(2 115 33 102 22 123 43 95)(3 118 32 109 23 126 42 92)(4 111 31 106 24 129 41 99)(5 114 40 103 25 122 50 96)(6 117 39 110 26 125 49 93)(7 120 38 107 27 128 48 100)(8 113 37 104 28 121 47 97)(9 116 36 101 29 124 46 94)(10 119 35 108 30 127 45 91)(11 82 131 60 159 80 148 65)(12 85 140 57 160 73 147 62)(13 88 139 54 151 76 146 69)(14 81 138 51 152 79 145 66)(15 84 137 58 153 72 144 63)(16 87 136 55 154 75 143 70)(17 90 135 52 155 78 142 67)(18 83 134 59 156 71 141 64)(19 86 133 56 157 74 150 61)(20 89 132 53 158 77 149 68)
(2 10)(3 9)(4 8)(5 7)(11 160)(12 159)(13 158)(14 157)(15 156)(16 155)(17 154)(18 153)(19 152)(20 151)(22 30)(23 29)(24 28)(25 27)(31 37)(32 36)(33 35)(38 40)(41 47)(42 46)(43 45)(48 50)(51 56)(52 55)(53 54)(57 60)(58 59)(61 66)(62 65)(63 64)(67 70)(68 69)(71 72)(73 80)(74 79)(75 78)(76 77)(81 86)(82 85)(83 84)(87 90)(88 89)(91 102)(92 101)(93 110)(94 109)(95 108)(96 107)(97 106)(98 105)(99 104)(100 103)(111 121)(112 130)(113 129)(114 128)(115 127)(116 126)(117 125)(118 124)(119 123)(120 122)(131 147)(132 146)(133 145)(134 144)(135 143)(136 142)(137 141)(138 150)(139 149)(140 148)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,73)(2,72)(3,71)(4,80)(5,79)(6,78)(7,77)(8,76)(9,75)(10,74)(11,107)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,110)(19,109)(20,108)(21,85)(22,84)(23,83)(24,82)(25,81)(26,90)(27,89)(28,88)(29,87)(30,86)(31,63)(32,62)(33,61)(34,70)(35,69)(36,68)(37,67)(38,66)(39,65)(40,64)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,60)(50,59)(91,158)(92,157)(93,156)(94,155)(95,154)(96,153)(97,152)(98,151)(99,160)(100,159)(111,145)(112,144)(113,143)(114,142)(115,141)(116,150)(117,149)(118,148)(119,147)(120,146)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,140)(128,139)(129,138)(130,137), (1,112,34,105,21,130,44,98)(2,115,33,102,22,123,43,95)(3,118,32,109,23,126,42,92)(4,111,31,106,24,129,41,99)(5,114,40,103,25,122,50,96)(6,117,39,110,26,125,49,93)(7,120,38,107,27,128,48,100)(8,113,37,104,28,121,47,97)(9,116,36,101,29,124,46,94)(10,119,35,108,30,127,45,91)(11,82,131,60,159,80,148,65)(12,85,140,57,160,73,147,62)(13,88,139,54,151,76,146,69)(14,81,138,51,152,79,145,66)(15,84,137,58,153,72,144,63)(16,87,136,55,154,75,143,70)(17,90,135,52,155,78,142,67)(18,83,134,59,156,71,141,64)(19,86,133,56,157,74,150,61)(20,89,132,53,158,77,149,68), (2,10)(3,9)(4,8)(5,7)(11,160)(12,159)(13,158)(14,157)(15,156)(16,155)(17,154)(18,153)(19,152)(20,151)(22,30)(23,29)(24,28)(25,27)(31,37)(32,36)(33,35)(38,40)(41,47)(42,46)(43,45)(48,50)(51,56)(52,55)(53,54)(57,60)(58,59)(61,66)(62,65)(63,64)(67,70)(68,69)(71,72)(73,80)(74,79)(75,78)(76,77)(81,86)(82,85)(83,84)(87,90)(88,89)(91,102)(92,101)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(111,121)(112,130)(113,129)(114,128)(115,127)(116,126)(117,125)(118,124)(119,123)(120,122)(131,147)(132,146)(133,145)(134,144)(135,143)(136,142)(137,141)(138,150)(139,149)(140,148)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,73)(2,72)(3,71)(4,80)(5,79)(6,78)(7,77)(8,76)(9,75)(10,74)(11,107)(12,106)(13,105)(14,104)(15,103)(16,102)(17,101)(18,110)(19,109)(20,108)(21,85)(22,84)(23,83)(24,82)(25,81)(26,90)(27,89)(28,88)(29,87)(30,86)(31,63)(32,62)(33,61)(34,70)(35,69)(36,68)(37,67)(38,66)(39,65)(40,64)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,60)(50,59)(91,158)(92,157)(93,156)(94,155)(95,154)(96,153)(97,152)(98,151)(99,160)(100,159)(111,145)(112,144)(113,143)(114,142)(115,141)(116,150)(117,149)(118,148)(119,147)(120,146)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,140)(128,139)(129,138)(130,137), (1,112,34,105,21,130,44,98)(2,115,33,102,22,123,43,95)(3,118,32,109,23,126,42,92)(4,111,31,106,24,129,41,99)(5,114,40,103,25,122,50,96)(6,117,39,110,26,125,49,93)(7,120,38,107,27,128,48,100)(8,113,37,104,28,121,47,97)(9,116,36,101,29,124,46,94)(10,119,35,108,30,127,45,91)(11,82,131,60,159,80,148,65)(12,85,140,57,160,73,147,62)(13,88,139,54,151,76,146,69)(14,81,138,51,152,79,145,66)(15,84,137,58,153,72,144,63)(16,87,136,55,154,75,143,70)(17,90,135,52,155,78,142,67)(18,83,134,59,156,71,141,64)(19,86,133,56,157,74,150,61)(20,89,132,53,158,77,149,68), (2,10)(3,9)(4,8)(5,7)(11,160)(12,159)(13,158)(14,157)(15,156)(16,155)(17,154)(18,153)(19,152)(20,151)(22,30)(23,29)(24,28)(25,27)(31,37)(32,36)(33,35)(38,40)(41,47)(42,46)(43,45)(48,50)(51,56)(52,55)(53,54)(57,60)(58,59)(61,66)(62,65)(63,64)(67,70)(68,69)(71,72)(73,80)(74,79)(75,78)(76,77)(81,86)(82,85)(83,84)(87,90)(88,89)(91,102)(92,101)(93,110)(94,109)(95,108)(96,107)(97,106)(98,105)(99,104)(100,103)(111,121)(112,130)(113,129)(114,128)(115,127)(116,126)(117,125)(118,124)(119,123)(120,122)(131,147)(132,146)(133,145)(134,144)(135,143)(136,142)(137,141)(138,150)(139,149)(140,148) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,73),(2,72),(3,71),(4,80),(5,79),(6,78),(7,77),(8,76),(9,75),(10,74),(11,107),(12,106),(13,105),(14,104),(15,103),(16,102),(17,101),(18,110),(19,109),(20,108),(21,85),(22,84),(23,83),(24,82),(25,81),(26,90),(27,89),(28,88),(29,87),(30,86),(31,63),(32,62),(33,61),(34,70),(35,69),(36,68),(37,67),(38,66),(39,65),(40,64),(41,58),(42,57),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,60),(50,59),(91,158),(92,157),(93,156),(94,155),(95,154),(96,153),(97,152),(98,151),(99,160),(100,159),(111,145),(112,144),(113,143),(114,142),(115,141),(116,150),(117,149),(118,148),(119,147),(120,146),(121,136),(122,135),(123,134),(124,133),(125,132),(126,131),(127,140),(128,139),(129,138),(130,137)], [(1,112,34,105,21,130,44,98),(2,115,33,102,22,123,43,95),(3,118,32,109,23,126,42,92),(4,111,31,106,24,129,41,99),(5,114,40,103,25,122,50,96),(6,117,39,110,26,125,49,93),(7,120,38,107,27,128,48,100),(8,113,37,104,28,121,47,97),(9,116,36,101,29,124,46,94),(10,119,35,108,30,127,45,91),(11,82,131,60,159,80,148,65),(12,85,140,57,160,73,147,62),(13,88,139,54,151,76,146,69),(14,81,138,51,152,79,145,66),(15,84,137,58,153,72,144,63),(16,87,136,55,154,75,143,70),(17,90,135,52,155,78,142,67),(18,83,134,59,156,71,141,64),(19,86,133,56,157,74,150,61),(20,89,132,53,158,77,149,68)], [(2,10),(3,9),(4,8),(5,7),(11,160),(12,159),(13,158),(14,157),(15,156),(16,155),(17,154),(18,153),(19,152),(20,151),(22,30),(23,29),(24,28),(25,27),(31,37),(32,36),(33,35),(38,40),(41,47),(42,46),(43,45),(48,50),(51,56),(52,55),(53,54),(57,60),(58,59),(61,66),(62,65),(63,64),(67,70),(68,69),(71,72),(73,80),(74,79),(75,78),(76,77),(81,86),(82,85),(83,84),(87,90),(88,89),(91,102),(92,101),(93,110),(94,109),(95,108),(96,107),(97,106),(98,105),(99,104),(100,103),(111,121),(112,130),(113,129),(114,128),(115,127),(116,126),(117,125),(118,124),(119,123),(120,122),(131,147),(132,146),(133,145),(134,144),(135,143),(136,142),(137,141),(138,150),(139,149),(140,148)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5 | 8A | ··· | 8H | 8I | 8J | 8K | 8L | 10A | 10B | 10C | 20A | ··· | 20F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 8 | ··· | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 20 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 20 | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 | 4 | 4 | 4 | 8 | ··· | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | C4○D4 | M4(2) | C8○D4 | F5 | C2×F5 | D5⋊M4(2) | D4×F5 | Q8.F5 |
kernel | D10⋊2M4(2) | C10.C42 | D10⋊C8 | Dic5⋊C8 | D20⋊8C4 | C2×D5⋊C8 | C2×C4.F5 | D10⋊C4 | C5×C4⋊C4 | C2×D20 | C5⋊C8 | Dic5 | D10 | C10 | C4⋊C4 | C2×C4 | C2 | C2 | C2 |
# reps | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 3 | 4 | 1 | 1 |
Matrix representation of D10⋊2M4(2) ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 1 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 1 | 0 | 40 | 0 |
0 | 0 | 0 | 1 | 40 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 38 | 22 | 19 | 3 |
0 | 0 | 19 | 0 | 22 | 3 |
0 | 0 | 38 | 3 | 22 | 0 |
0 | 0 | 0 | 3 | 19 | 22 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 9 | 11 | 11 |
0 | 0 | 12 | 18 | 12 | 20 |
0 | 0 | 21 | 29 | 23 | 29 |
0 | 0 | 30 | 30 | 32 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40,0,0,1,0,0,0],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,38,19,38,0,0,0,22,0,3,3,0,0,19,22,22,19,0,0,3,3,0,22],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,21,30,0,0,9,18,29,30,0,0,11,12,23,32,0,0,11,20,29,40],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0] >;
D10⋊2M4(2) in GAP, Magma, Sage, TeX
D_{10}\rtimes_2M_4(2)
% in TeX
G:=Group("D10:2M4(2)");
// GroupNames label
G:=SmallGroup(320,1042);
// by ID
G=gap.SmallGroup(320,1042);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,758,219,184,136,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=c^8=d^2=1,b*a*b=d*a*d=a^-1,c*a*c^-1=a^7,c*b*c^-1=a*b,d*b*d=a^3*b,d*c*d=c^5>;
// generators/relations