Extensions 1→N→G→Q→1 with N=C2xC8 and Q=F5

Direct product G=NxQ with N=C2xC8 and Q=F5
dρLabelID
C2xC8xF580C2xC8xF5320,1054

Semidirect products G=N:Q with N=C2xC8 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C2xC8):1F5 = (C2xC8):F5φ: F5/C5C4 ⊆ Aut C2xC8804(C2xC8):1F5320,232
(C2xC8):2F5 = C20.24C42φ: F5/C5C4 ⊆ Aut C2xC8804(C2xC8):2F5320,233
(C2xC8):3F5 = D10.3M4(2)φ: F5/D5C2 ⊆ Aut C2xC880(C2xC8):3F5320,230
(C2xC8):4F5 = D10.10D8φ: F5/D5C2 ⊆ Aut C2xC880(C2xC8):4F5320,231
(C2xC8):5F5 = C2xD5.D8φ: F5/D5C2 ⊆ Aut C2xC880(C2xC8):5F5320,1058
(C2xC8):6F5 = (C2xC8):6F5φ: F5/D5C2 ⊆ Aut C2xC8804(C2xC8):6F5320,1059
(C2xC8):7F5 = C2xC40:C4φ: F5/D5C2 ⊆ Aut C2xC880(C2xC8):7F5320,1057
(C2xC8):8F5 = C2xC8:F5φ: F5/D5C2 ⊆ Aut C2xC880(C2xC8):8F5320,1055
(C2xC8):9F5 = C20.12C42φ: F5/D5C2 ⊆ Aut C2xC8804(C2xC8):9F5320,1056

Non-split extensions G=N.Q with N=C2xC8 and Q=F5
extensionφ:Q→Aut NdρLabelID
(C2xC8).1F5 = C20.23C42φ: F5/C5C4 ⊆ Aut C2xC8804(C2xC8).1F5320,228
(C2xC8).2F5 = C20.10M4(2)φ: F5/C5C4 ⊆ Aut C2xC8804(C2xC8).2F5320,229
(C2xC8).3F5 = C20.25C42φ: F5/C5C4 ⊆ Aut C2xC8804(C2xC8).3F5320,235
(C2xC8).4F5 = C20.31M4(2)φ: F5/D5C2 ⊆ Aut C2xC8320(C2xC8).4F5320,218
(C2xC8).5F5 = C20.26M4(2)φ: F5/D5C2 ⊆ Aut C2xC8320(C2xC8).5F5320,221
(C2xC8).6F5 = Dic5.13D8φ: F5/D5C2 ⊆ Aut C2xC8320(C2xC8).6F5320,222
(C2xC8).7F5 = D10:C16φ: F5/D5C2 ⊆ Aut C2xC8160(C2xC8).7F5320,225
(C2xC8).8F5 = C10.M5(2)φ: F5/D5C2 ⊆ Aut C2xC8320(C2xC8).8F5320,226
(C2xC8).9F5 = C20.10C42φ: F5/D5C2 ⊆ Aut C2xC8160(C2xC8).9F5320,234
(C2xC8).10F5 = C40:1C8φ: F5/D5C2 ⊆ Aut C2xC8320(C2xC8).10F5320,220
(C2xC8).11F5 = C2xD10.Q8φ: F5/D5C2 ⊆ Aut C2xC8160(C2xC8).11F5320,1061
(C2xC8).12F5 = C40.1C8φ: F5/D5C2 ⊆ Aut C2xC8804(C2xC8).12F5320,227
(C2xC8).13F5 = (C8xD5).C4φ: F5/D5C2 ⊆ Aut C2xC8804(C2xC8).13F5320,1062
(C2xC8).14F5 = C40:2C8φ: F5/D5C2 ⊆ Aut C2xC8320(C2xC8).14F5320,219
(C2xC8).15F5 = C2xC40.C4φ: F5/D5C2 ⊆ Aut C2xC8160(C2xC8).15F5320,1060
(C2xC8).16F5 = C5:M6(2)φ: F5/D5C2 ⊆ Aut C2xC81604(C2xC8).16F5320,215
(C2xC8).17F5 = C40:C8φ: F5/D5C2 ⊆ Aut C2xC8320(C2xC8).17F5320,217
(C2xC8).18F5 = C40.C8φ: F5/D5C2 ⊆ Aut C2xC8320(C2xC8).18F5320,224
(C2xC8).19F5 = C2xC8.F5φ: F5/D5C2 ⊆ Aut C2xC8160(C2xC8).19F5320,1052
(C2xC8).20F5 = D5:M5(2)φ: F5/D5C2 ⊆ Aut C2xC8804(C2xC8).20F5320,1053
(C2xC8).21F5 = C2xC5:C32central extension (φ=1)320(C2xC8).21F5320,214
(C2xC8).22F5 = C8xC5:C8central extension (φ=1)320(C2xC8).22F5320,216
(C2xC8).23F5 = Dic5:C16central extension (φ=1)320(C2xC8).23F5320,223
(C2xC8).24F5 = C2xD5:C16central extension (φ=1)160(C2xC8).24F5320,1051

׿
x
:
Z
F
o
wr
Q
<