Extensions 1→N→G→Q→1 with N=Dic20 and Q=C4

Direct product G=NxQ with N=Dic20 and Q=C4
dρLabelID
C4xDic20320C4xDic20320,325

Semidirect products G=N:Q with N=Dic20 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic20:1C4 = D10.D8φ: C4/C1C4 ⊆ Out Dic20808-Dic20:1C4320,241
Dic20:2C4 = D8:F5φ: C4/C1C4 ⊆ Out Dic20808-Dic20:2C4320,1071
Dic20:3C4 = Dic20:C4φ: C4/C1C4 ⊆ Out Dic20808-Dic20:3C4320,1077
Dic20:4C4 = D5.Q32φ: C4/C1C4 ⊆ Out Dic20808-Dic20:4C4320,246
Dic20:5C4 = D8:5F5φ: C4/C1C4 ⊆ Out Dic20808-Dic20:5C4320,1070
Dic20:6C4 = Q16xF5φ: C4/C1C4 ⊆ Out Dic20808-Dic20:6C4320,1076
Dic20:7C4 = C40.78D4φ: C4/C2C2 ⊆ Out Dic20320Dic20:7C4320,61
Dic20:8C4 = D40:8C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:8C4320,76
Dic20:9C4 = Dic20:9C4φ: C4/C2C2 ⊆ Out Dic20320Dic20:9C4320,343
Dic20:10C4 = D40:10C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:10C4320,344
Dic20:11C4 = C10.Q32φ: C4/C2C2 ⊆ Out Dic20320Dic20:11C4320,50
Dic20:12C4 = Dic5:5Q16φ: C4/C2C2 ⊆ Out Dic20320Dic20:12C4320,500
Dic20:13C4 = D40:13C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:13C4320,522
Dic20:14C4 = D40:14C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:14C4320,46
Dic20:15C4 = Dic20:15C4φ: C4/C2C2 ⊆ Out Dic20320Dic20:15C4320,480
Dic20:16C4 = D40:16C4φ: C4/C2C2 ⊆ Out Dic20804Dic20:16C4320,521
Dic20:17C4 = D40:17C4φ: trivial image802Dic20:17C4320,327

Non-split extensions G=N.Q with N=Dic20 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic20.1C4 = Dic20.C4φ: C4/C1C4 ⊆ Out Dic201608-Dic20.1C4320,248
Dic20.2C4 = D8.F5φ: C4/C1C4 ⊆ Out Dic201608-Dic20.2C4320,243
Dic20.3C4 = D40.3C4φ: C4/C2C2 ⊆ Out Dic201602Dic20.3C4320,68
Dic20.4C4 = C20.4D8φ: C4/C2C2 ⊆ Out Dic201604-Dic20.4C4320,75
Dic20.5C4 = D40.5C4φ: C4/C2C2 ⊆ Out Dic201604Dic20.5C4320,55
Dic20.6C4 = C40.8D4φ: C4/C2C2 ⊆ Out Dic201604-Dic20.6C4320,54

׿
x
:
Z
F
o
wr
Q
<