Copied to
clipboard

G = D4013C4order 320 = 26·5

7th semidirect product of D40 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4013C4, Dic2013C4, M4(2).27D10, C56(C8○D8), C8.16(C4×D5), C40⋊C210C4, C40.76(C2×C4), (C8×Dic5)⋊1C2, C10.86(C4×D4), C4.213(D4×D5), C8.C48D5, C52C8.56D4, D207C48C2, D20.25(C2×C4), C20.372(C2×D4), (C2×C8).252D10, D407C2.5C2, (C2×C40).42C22, D20.2C411C2, C20.114(C22×C4), (C2×C20).311C23, Dic10.26(C2×C4), C4○D20.18C22, C2.16(D208C4), C22.2(Q82D5), (C4×Dic5).266C22, (C5×M4(2)).21C22, C4.47(C2×C4×D5), (C5×C8.C4)⋊5C2, (C2×C10).2(C4○D4), (C2×C4).414(C22×D5), (C2×C52C8).246C22, SmallGroup(320,522)

Series: Derived Chief Lower central Upper central

C1C20 — D4013C4
C1C5C10C20C2×C20C4○D20D407C2 — D4013C4
C5C10C20 — D4013C4
C1C4C2×C4C8.C4

Generators and relations for D4013C4
 G = < a,b,c | a40=b2=c4=1, bab=a-1, cac-1=a9, cbc-1=a38b >

Subgroups: 390 in 106 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, Q8, D5, C10, C10, C42, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, Q16, C4○D4, Dic5, C20, D10, C2×C10, C4×C8, C4≀C2, C8.C4, C8○D4, C4○D8, C52C8, C40, C40, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C8○D8, C8×D5, C8⋊D5, C40⋊C2, D40, Dic20, C2×C52C8, C4×Dic5, C2×C40, C5×M4(2), C4○D20, C8×Dic5, D207C4, C5×C8.C4, D407C2, D20.2C4, D4013C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C4×D4, C4×D5, C22×D5, C8○D8, C2×C4×D5, D4×D5, Q82D5, D208C4, D4013C4

Smallest permutation representation of D4013C4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 63)(2 62)(3 61)(4 60)(5 59)(6 58)(7 57)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 80)(25 79)(26 78)(27 77)(28 76)(29 75)(30 74)(31 73)(32 72)(33 71)(34 70)(35 69)(36 68)(37 67)(38 66)(39 65)(40 64)
(1 11 21 31)(2 20 22 40)(3 29 23 9)(4 38 24 18)(5 7 25 27)(6 16 26 36)(8 34 28 14)(10 12 30 32)(13 39 33 19)(15 17 35 37)(41 77)(42 46)(43 55)(44 64)(45 73)(47 51)(48 60)(49 69)(50 78)(52 56)(53 65)(54 74)(57 61)(58 70)(59 79)(62 66)(63 75)(67 71)(68 80)(72 76)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,80)(25,79)(26,78)(27,77)(28,76)(29,75)(30,74)(31,73)(32,72)(33,71)(34,70)(35,69)(36,68)(37,67)(38,66)(39,65)(40,64), (1,11,21,31)(2,20,22,40)(3,29,23,9)(4,38,24,18)(5,7,25,27)(6,16,26,36)(8,34,28,14)(10,12,30,32)(13,39,33,19)(15,17,35,37)(41,77)(42,46)(43,55)(44,64)(45,73)(47,51)(48,60)(49,69)(50,78)(52,56)(53,65)(54,74)(57,61)(58,70)(59,79)(62,66)(63,75)(67,71)(68,80)(72,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,63)(2,62)(3,61)(4,60)(5,59)(6,58)(7,57)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,80)(25,79)(26,78)(27,77)(28,76)(29,75)(30,74)(31,73)(32,72)(33,71)(34,70)(35,69)(36,68)(37,67)(38,66)(39,65)(40,64), (1,11,21,31)(2,20,22,40)(3,29,23,9)(4,38,24,18)(5,7,25,27)(6,16,26,36)(8,34,28,14)(10,12,30,32)(13,39,33,19)(15,17,35,37)(41,77)(42,46)(43,55)(44,64)(45,73)(47,51)(48,60)(49,69)(50,78)(52,56)(53,65)(54,74)(57,61)(58,70)(59,79)(62,66)(63,75)(67,71)(68,80)(72,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,63),(2,62),(3,61),(4,60),(5,59),(6,58),(7,57),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,80),(25,79),(26,78),(27,77),(28,76),(29,75),(30,74),(31,73),(32,72),(33,71),(34,70),(35,69),(36,68),(37,67),(38,66),(39,65),(40,64)], [(1,11,21,31),(2,20,22,40),(3,29,23,9),(4,38,24,18),(5,7,25,27),(6,16,26,36),(8,34,28,14),(10,12,30,32),(13,39,33,19),(15,17,35,37),(41,77),(42,46),(43,55),(44,64),(45,73),(47,51),(48,60),(49,69),(50,78),(52,56),(53,65),(54,74),(57,61),(58,70),(59,79),(62,66),(63,75),(67,71),(68,80),(72,76)]])

56 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I5A5B8A8B8C8D8E8F8G8H8I8J8K8L8M8N10A10B10C10D20A20B20C20D20E20F40A···40H40I···40P
order1222244444444455888888888888881010101020202020202040···4040···40
size112202011210101010202022222244445555101022442222444···48···8

56 irreducible representations

dim1111111112222222444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4D4D5C4○D4D10D10C4×D5C8○D8D4×D5Q82D5D4013C4
kernelD4013C4C8×Dic5D207C4C5×C8.C4D407C2D20.2C4C40⋊C2D40Dic20C52C8C8.C4C2×C10C2×C8M4(2)C8C5C4C22C1
# reps1121124222222488228

Matrix representation of D4013C4 in GL4(𝔽41) generated by

7600
34000
00380
001327
,
7100
343400
00404
0001
,
343500
8700
0090
002340
G:=sub<GL(4,GF(41))| [7,34,0,0,6,0,0,0,0,0,38,13,0,0,0,27],[7,34,0,0,1,34,0,0,0,0,40,0,0,0,4,1],[34,8,0,0,35,7,0,0,0,0,9,23,0,0,0,40] >;

D4013C4 in GAP, Magma, Sage, TeX

D_{40}\rtimes_{13}C_4
% in TeX

G:=Group("D40:13C4");
// GroupNames label

G:=SmallGroup(320,522);
// by ID

G=gap.SmallGroup(320,522);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,555,58,136,1684,438,102,12550]);
// Polycyclic

G:=Group<a,b,c|a^40=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^38*b>;
// generators/relations

׿
×
𝔽