Copied to
clipboard

G = C2×GL3(𝔽2)  order 336 = 24·3·7

Direct product of C2 and GL3(𝔽2)

direct product, non-abelian, not soluble

Aliases: C2×GL3(𝔽2), SmallGroup(336,209)

Series: ChiefDerived Lower central Upper central

C1C2 — C2×GL3(𝔽2)
GL3(𝔽2) — C2×GL3(𝔽2)
GL3(𝔽2) — C2×GL3(𝔽2)
C1C2

21C2
21C2
28C3
8C7
7C22
7C22
21C22
21C22
21C4
21C4
21C22
28S3
28C6
28S3
8C14
8C7⋊C3
7C23
7C23
21D4
21C2×C4
21D4
21D4
21D4
7A4
7A4
28D6
8C2×C7⋊C3
21C2×D4
7S4
7C2×A4
7S4
7S4
7C2×A4
7S4
7C2×S4
7C2×S4

Character table of C2×GL3(𝔽2)

 class 12A2B2C34A4B67A7B14A14B
 size 1121215642425624242424
ρ1111111111111    trivial
ρ21-11-11-11-111-1-1    linear of order 2
ρ33-3-110-110-1--7/2-1+-7/21+-7/21--7/2    complex faithful
ρ433-1-10110-1--7/2-1+-7/2-1--7/2-1+-7/2    complex lifted from GL3(𝔽2)
ρ53-3-110-110-1+-7/2-1--7/21--7/21+-7/2    complex faithful
ρ633-1-10110-1+-7/2-1--7/2-1+-7/2-1--7/2    complex lifted from GL3(𝔽2)
ρ766220000-1-1-1-1    orthogonal lifted from GL3(𝔽2)
ρ86-62-20000-1-111    orthogonal faithful
ρ977-1-11-1-110000    orthogonal lifted from GL3(𝔽2)
ρ107-7-1111-1-10000    orthogonal faithful
ρ118-800-100111-1-1    orthogonal faithful
ρ128800-100-11111    orthogonal lifted from GL3(𝔽2)

Permutation representations of C2×GL3(𝔽2)
On 14 points - transitive group 14T17
Generators in S14
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 7 9 12 11 5)(2 4 14 13 8 3)(6 10)

G:=sub<Sym(14)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,7,9,12,11,5)(2,4,14,13,8,3)(6,10)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,7,9,12,11,5)(2,4,14,13,8,3)(6,10) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,7,9,12,11,5),(2,4,14,13,8,3),(6,10)]])

G:=TransitiveGroup(14,17);

On 14 points - transitive group 14T19
Generators in S14
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 13 5 14 7 11)(2 10 3 8 4 9)(6 12)

G:=sub<Sym(14)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,13,5,14,7,11)(2,10,3,8,4,9)(6,12)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,13,5,14,7,11)(2,10,3,8,4,9)(6,12) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,13,5,14,7,11),(2,10,3,8,4,9),(6,12)]])

G:=TransitiveGroup(14,19);

On 16 points - transitive group 16T714
Generators in S16
(3 4 5 6 7 8 9)(10 11 12 13 14 15 16)
(1 14 7 2 6 15)(3 16 5 11 8 13)(4 12)(9 10)

G:=sub<Sym(16)| (3,4,5,6,7,8,9)(10,11,12,13,14,15,16), (1,14,7,2,6,15)(3,16,5,11,8,13)(4,12)(9,10)>;

G:=Group( (3,4,5,6,7,8,9)(10,11,12,13,14,15,16), (1,14,7,2,6,15)(3,16,5,11,8,13)(4,12)(9,10) );

G=PermutationGroup([[(3,4,5,6,7,8,9),(10,11,12,13,14,15,16)], [(1,14,7,2,6,15),(3,16,5,11,8,13),(4,12),(9,10)]])

G:=TransitiveGroup(16,714);

On 28 points - transitive group 28T43
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 16 24 9 26 21)(2 20 22 10 23 19)(3 18 4 11 28 12)(5 17 7 13 27 8)(6 14)(15 25)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,16,24,9,26,21)(2,20,22,10,23,19)(3,18,4,11,28,12)(5,17,7,13,27,8)(6,14)(15,25)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,16,24,9,26,21)(2,20,22,10,23,19)(3,18,4,11,28,12)(5,17,7,13,27,8)(6,14)(15,25) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,16,24,9,26,21),(2,20,22,10,23,19),(3,18,4,11,28,12),(5,17,7,13,27,8),(6,14),(15,25)]])

G:=TransitiveGroup(28,43);

Polynomial with Galois group C2×GL3(𝔽2) over ℚ
actionf(x)Disc(f)
14T17x14-18x12-964x10+32592x8-353912x6+1736792x4-3987152x2+3495368-253·66110·181755260737814
14T19x14-17x12+114x10-386x8+699x6-650x4+257x2-17214·179·4914

Matrix representation of C2×GL3(𝔽2) in GL3(𝔽7) generated by

414
403
606
,
536
266
063
G:=sub<GL(3,GF(7))| [4,4,6,1,0,0,4,3,6],[5,2,0,3,6,6,6,6,3] >;

C2×GL3(𝔽2) in GAP, Magma, Sage, TeX

C_2\times {\rm GL}_3({\mathbb F}_2)
% in TeX

G:=Group("C2xGL(3,2)");
// GroupNames label

G:=SmallGroup(336,209);
// by ID

G=gap.SmallGroup(336,209);
# by ID

Export

Subgroup lattice of C2×GL3(𝔽2) in TeX
Character table of C2×GL3(𝔽2) in TeX

׿
×
𝔽