Copied to
clipboard

G = C2×GL3(𝔽2)  order 336 = 24·3·7

Direct product of C2 and GL3(𝔽2)

direct product, non-abelian, not soluble

Aliases: C2×GL3(𝔽2), SmallGroup(336,209)

Series: ChiefDerived Lower central Upper central

C1C2 — C2×GL3(𝔽2)
GL3(𝔽2) — C2×GL3(𝔽2)
GL3(𝔽2) — C2×GL3(𝔽2)
C1C2

21C2
21C2
28C3
8C7
7C22
7C22
21C22
21C22
21C4
21C4
21C22
28S3
28C6
28S3
8C14
8C7⋊C3
7C23
7C23
21D4
21C2×C4
21D4
21D4
21D4
7A4
7A4
28D6
8C2×C7⋊C3
21C2×D4
7S4
7C2×A4
7S4
7S4
7C2×A4
7S4
7C2×S4
7C2×S4

Character table of C2×GL3(𝔽2)

 class 12A2B2C34A4B67A7B14A14B
 size 1121215642425624242424
ρ1111111111111    trivial
ρ21-11-11-11-111-1-1    linear of order 2
ρ33-3-110-110-1--7/2-1+-7/21+-7/21--7/2    complex faithful
ρ433-1-10110-1--7/2-1+-7/2-1--7/2-1+-7/2    complex lifted from GL3(𝔽2)
ρ53-3-110-110-1+-7/2-1--7/21--7/21+-7/2    complex faithful
ρ633-1-10110-1+-7/2-1--7/2-1+-7/2-1--7/2    complex lifted from GL3(𝔽2)
ρ766220000-1-1-1-1    orthogonal lifted from GL3(𝔽2)
ρ86-62-20000-1-111    orthogonal faithful
ρ977-1-11-1-110000    orthogonal lifted from GL3(𝔽2)
ρ107-7-1111-1-10000    orthogonal faithful
ρ118-800-100111-1-1    orthogonal faithful
ρ128800-100-11111    orthogonal lifted from GL3(𝔽2)

Permutation representations of C2×GL3(𝔽2)
On 14 points - transitive group 14T17
Generators in S14
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 7 9 11 10 6)(2 5 13 12 8 3)(4 14)

G:=sub<Sym(14)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,7,9,11,10,6)(2,5,13,12,8,3)(4,14)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,7,9,11,10,6)(2,5,13,12,8,3)(4,14) );

G=PermutationGroup([(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,7,9,11,10,6),(2,5,13,12,8,3),(4,14)])

G:=TransitiveGroup(14,17);

On 14 points - transitive group 14T19
Generators in S14
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)
(1 12 6 13 7 11)(2 10 3 14 5 8)(4 9)

G:=sub<Sym(14)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,12,6,13,7,11)(2,10,3,14,5,8)(4,9)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14), (1,12,6,13,7,11)(2,10,3,14,5,8)(4,9) );

G=PermutationGroup([(1,2,3,4,5,6,7),(8,9,10,11,12,13,14)], [(1,12,6,13,7,11),(2,10,3,14,5,8),(4,9)])

G:=TransitiveGroup(14,19);

On 16 points - transitive group 16T714
Generators in S16
(3 4 5 6 7 8 9)(10 11 12 13 14 15 16)
(1 8 15 2 14 9)(3 13 5 16 7 11)(4 10)(6 12)

G:=sub<Sym(16)| (3,4,5,6,7,8,9)(10,11,12,13,14,15,16), (1,8,15,2,14,9)(3,13,5,16,7,11)(4,10)(6,12)>;

G:=Group( (3,4,5,6,7,8,9)(10,11,12,13,14,15,16), (1,8,15,2,14,9)(3,13,5,16,7,11)(4,10)(6,12) );

G=PermutationGroup([(3,4,5,6,7,8,9),(10,11,12,13,14,15,16)], [(1,8,15,2,14,9),(3,13,5,16,7,11),(4,10),(6,12)])

G:=TransitiveGroup(16,714);

On 28 points - transitive group 28T43
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 25 12 18 13 24)(2 23 9 19 11 28)(3 27 5 20 8 15)(4 21)(6 26 7 16 14 17)(10 22)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,25,12,18,13,24)(2,23,9,19,11,28)(3,27,5,20,8,15)(4,21)(6,26,7,16,14,17)(10,22)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,25,12,18,13,24)(2,23,9,19,11,28)(3,27,5,20,8,15)(4,21)(6,26,7,16,14,17)(10,22) );

G=PermutationGroup([(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,25,12,18,13,24),(2,23,9,19,11,28),(3,27,5,20,8,15),(4,21),(6,26,7,16,14,17),(10,22)])

G:=TransitiveGroup(28,43);

Polynomial with Galois group C2×GL3(𝔽2) over ℚ
actionf(x)Disc(f)
14T17x14-18x12-964x10+32592x8-353912x6+1736792x4-3987152x2+3495368-253·66110·181755260737814
14T19x14-17x12+114x10-386x8+699x6-650x4+257x2-17214·179·4914

Matrix representation of C2×GL3(𝔽2) in GL3(𝔽7) generated by

414
403
606
,
536
266
063
G:=sub<GL(3,GF(7))| [4,4,6,1,0,0,4,3,6],[5,2,0,3,6,6,6,6,3] >;

C2×GL3(𝔽2) in GAP, Magma, Sage, TeX

C_2\times {\rm GL}_3({\mathbb F}_2)
% in TeX

G:=Group("C2xGL(3,2)");
// GroupNames label

G:=SmallGroup(336,209);
// by ID

G=gap.SmallGroup(336,209);
# by ID

Export

Subgroup lattice of C2×GL3(𝔽2) in TeX
Character table of C2×GL3(𝔽2) in TeX

׿
×
𝔽