Copied to
clipboard

G = C8⋊F7order 336 = 24·3·7

3rd semidirect product of C8 and F7 acting via F7/C7⋊C3=C2

metacyclic, supersoluble, monomial

Aliases: C83F7, C564C6, D14.C12, Dic7.C12, C7⋊C84C6, C7⋊C12.C4, C8⋊D7⋊C3, C7⋊C244C2, (C2×F7).C4, C7⋊C31M4(2), C2.3(C4×F7), (C4×D7).2C6, (C4×F7).2C2, C71(C3×M4(2)), C4.13(C2×F7), C28.14(C2×C6), C14.2(C2×C12), (C8×C7⋊C3)⋊4C2, (C4×C7⋊C3).14C22, (C2×C7⋊C3).2(C2×C4), SmallGroup(336,8)

Series: Derived Chief Lower central Upper central

C1C14 — C8⋊F7
C1C7C14C28C4×C7⋊C3C4×F7 — C8⋊F7
C7C14 — C8⋊F7
C1C4C8

Generators and relations for C8⋊F7
 G = < a,b,c | a8=b7=c6=1, ab=ba, cac-1=a5, cbc-1=b5 >

14C2
7C3
7C22
7C4
7C6
14C6
2D7
7C2×C4
7C8
7C12
7C2×C6
7C12
2F7
7M4(2)
7C24
7C2×C12
7C24
7C3×M4(2)

Smallest permutation representation of C8⋊F7
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)
(1 31 34 16 19 46 49)(2 32 35 9 20 47 50)(3 25 36 10 21 48 51)(4 26 37 11 22 41 52)(5 27 38 12 23 42 53)(6 28 39 13 24 43 54)(7 29 40 14 17 44 55)(8 30 33 15 18 45 56)
(2 6)(4 8)(9 39 50 24 47 28)(10 36 51 21 48 25)(11 33 52 18 41 30)(12 38 53 23 42 27)(13 35 54 20 43 32)(14 40 55 17 44 29)(15 37 56 22 45 26)(16 34 49 19 46 31)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,31,34,16,19,46,49)(2,32,35,9,20,47,50)(3,25,36,10,21,48,51)(4,26,37,11,22,41,52)(5,27,38,12,23,42,53)(6,28,39,13,24,43,54)(7,29,40,14,17,44,55)(8,30,33,15,18,45,56), (2,6)(4,8)(9,39,50,24,47,28)(10,36,51,21,48,25)(11,33,52,18,41,30)(12,38,53,23,42,27)(13,35,54,20,43,32)(14,40,55,17,44,29)(15,37,56,22,45,26)(16,34,49,19,46,31)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56), (1,31,34,16,19,46,49)(2,32,35,9,20,47,50)(3,25,36,10,21,48,51)(4,26,37,11,22,41,52)(5,27,38,12,23,42,53)(6,28,39,13,24,43,54)(7,29,40,14,17,44,55)(8,30,33,15,18,45,56), (2,6)(4,8)(9,39,50,24,47,28)(10,36,51,21,48,25)(11,33,52,18,41,30)(12,38,53,23,42,27)(13,35,54,20,43,32)(14,40,55,17,44,29)(15,37,56,22,45,26)(16,34,49,19,46,31) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56)], [(1,31,34,16,19,46,49),(2,32,35,9,20,47,50),(3,25,36,10,21,48,51),(4,26,37,11,22,41,52),(5,27,38,12,23,42,53),(6,28,39,13,24,43,54),(7,29,40,14,17,44,55),(8,30,33,15,18,45,56)], [(2,6),(4,8),(9,39,50,24,47,28),(10,36,51,21,48,25),(11,33,52,18,41,30),(12,38,53,23,42,27),(13,35,54,20,43,32),(14,40,55,17,44,29),(15,37,56,22,45,26),(16,34,49,19,46,31)]])

38 conjugacy classes

class 1 2A2B3A3B4A4B4C6A6B6C6D 7 8A8B8C8D12A12B12C12D12E12F 14 24A···24H28A28B56A56B56C56D
order122334446666788881212121212121424···24282856565656
size1114771114771414622141477771414614···14666666

38 irreducible representations

dim111111111111226666
type++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12M4(2)C3×M4(2)F7C2×F7C4×F7C8⋊F7
kernelC8⋊F7C7⋊C24C8×C7⋊C3C4×F7C8⋊D7C7⋊C12C2×F7C7⋊C8C56C4×D7Dic7D14C7⋊C3C7C8C4C2C1
# reps111122222244241124

Matrix representation of C8⋊F7 in GL6(𝔽337)

9701431941430
1949714300143
19419424001430
0194097143143
19400194240143
01941431940240
,
00000336
10000336
01000336
00100336
00010336
00001336
,
000010
001000
100000
000001
000100
010000

G:=sub<GL(6,GF(337))| [97,194,194,0,194,0,0,97,194,194,0,194,143,143,240,0,0,143,194,0,0,97,194,194,143,0,143,143,240,0,0,143,0,143,143,240],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,336,336,336,336,336,336],[0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C8⋊F7 in GAP, Magma, Sage, TeX

C_8\rtimes F_7
% in TeX

G:=Group("C8:F7");
// GroupNames label

G:=SmallGroup(336,8);
// by ID

G=gap.SmallGroup(336,8);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,313,79,69,10373,1745]);
// Polycyclic

G:=Group<a,b,c|a^8=b^7=c^6=1,a*b=b*a,c*a*c^-1=a^5,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C8⋊F7 in TeX

׿
×
𝔽