Extensions 1→N→G→Q→1 with N=C7⋊C8 and Q=C6

Direct product G=N×Q with N=C7⋊C8 and Q=C6
dρLabelID
C6×C7⋊C8336C6xC7:C8336,63

Semidirect products G=N:Q with N=C7⋊C8 and Q=C6
extensionφ:Q→Out NdρLabelID
C7⋊C81C6 = D4⋊F7φ: C6/C1C6 ⊆ Out C7⋊C85612+C7:C8:1C6336,18
C7⋊C82C6 = D4.F7φ: C6/C1C6 ⊆ Out C7⋊C85612-C7:C8:2C6336,19
C7⋊C83C6 = Q82F7φ: C6/C1C6 ⊆ Out C7⋊C85612+C7:C8:3C6336,20
C7⋊C84C6 = C8⋊F7φ: C6/C1C6 ⊆ Out C7⋊C8566C7:C8:4C6336,8
C7⋊C85C6 = C28.C12φ: C6/C1C6 ⊆ Out C7⋊C8566C7:C8:5C6336,13
C7⋊C86C6 = C8×F7φ: C6/C2C3 ⊆ Out C7⋊C8566C7:C8:6C6336,7
C7⋊C87C6 = C2×C7⋊C24φ: C6/C2C3 ⊆ Out C7⋊C8112C7:C8:7C6336,12
C7⋊C88C6 = C3×D4⋊D7φ: C6/C3C2 ⊆ Out C7⋊C81684C7:C8:8C6336,69
C7⋊C89C6 = C3×D4.D7φ: C6/C3C2 ⊆ Out C7⋊C81684C7:C8:9C6336,70
C7⋊C810C6 = C3×Q8⋊D7φ: C6/C3C2 ⊆ Out C7⋊C81684C7:C8:10C6336,71
C7⋊C811C6 = C3×C8⋊D7φ: C6/C3C2 ⊆ Out C7⋊C81682C7:C8:11C6336,59
C7⋊C812C6 = C3×C4.Dic7φ: C6/C3C2 ⊆ Out C7⋊C81682C7:C8:12C6336,64
C7⋊C813C6 = D7×C24φ: trivial image1682C7:C8:13C6336,58

Non-split extensions G=N.Q with N=C7⋊C8 and Q=C6
extensionφ:Q→Out NdρLabelID
C7⋊C8.C6 = Q8.2F7φ: C6/C1C6 ⊆ Out C7⋊C811212-C7:C8.C6336,21
C7⋊C8.2C6 = C3×C7⋊Q16φ: C6/C3C2 ⊆ Out C7⋊C83364C7:C8.2C6336,72

׿
×
𝔽