Extensions 1→N→G→Q→1 with N=C3 and Q=C2×He3⋊C2

Direct product G=N×Q with N=C3 and Q=C2×He3⋊C2
dρLabelID
C6×He3⋊C254C6xHe3:C2324,145

Semidirect products G=N:Q with N=C3 and Q=C2×He3⋊C2
extensionφ:Q→Aut NdρLabelID
C31(C2×He3⋊C2) = S3×He3⋊C2φ: C2×He3⋊C2/He3⋊C2C2 ⊆ Aut C3186C3:1(C2xHe3:C2)324,122
C32(C2×He3⋊C2) = C2×He35S3φ: C2×He3⋊C2/C2×He3C2 ⊆ Aut C3366C3:2(C2xHe3:C2)324,150

Non-split extensions G=N.Q with N=C3 and Q=C2×He3⋊C2
extensionφ:Q→Aut NdρLabelID
C3.1(C2×He3⋊C2) = C2×C322D9φ: C2×He3⋊C2/C2×He3C2 ⊆ Aut C3366C3.1(C2xHe3:C2)324,75
C3.2(C2×He3⋊C2) = C2×C33⋊S3φ: C2×He3⋊C2/C2×He3C2 ⊆ Aut C3186+C3.2(C2xHe3:C2)324,77
C3.3(C2×He3⋊C2) = C2×He3.3S3φ: C2×He3⋊C2/C2×He3C2 ⊆ Aut C3546+C3.3(C2xHe3:C2)324,78
C3.4(C2×He3⋊C2) = C2×He3⋊S3φ: C2×He3⋊C2/C2×He3C2 ⊆ Aut C3546+C3.4(C2xHe3:C2)324,79
C3.5(C2×He3⋊C2) = C2×3- 1+2.S3φ: C2×He3⋊C2/C2×He3C2 ⊆ Aut C3546+C3.5(C2xHe3:C2)324,80

׿
×
𝔽