Extensions 1→N→G→Q→1 with N=C4×S3 and Q=D7

Direct product G=N×Q with N=C4×S3 and Q=D7
dρLabelID
C4×S3×D7844C4xS3xD7336,147

Semidirect products G=N:Q with N=C4×S3 and Q=D7
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1D7 = D285S3φ: D7/C7C2 ⊆ Out C4×S31684-(C4xS3):1D7336,138
(C4×S3)⋊2D7 = D84⋊C2φ: D7/C7C2 ⊆ Out C4×S31684+(C4xS3):2D7336,142
(C4×S3)⋊3D7 = S3×D28φ: D7/C7C2 ⊆ Out C4×S3844+(C4xS3):3D7336,149
(C4×S3)⋊4D7 = D6.D14φ: D7/C7C2 ⊆ Out C4×S31684(C4xS3):4D7336,144

Non-split extensions G=N.Q with N=C4×S3 and Q=D7
extensionφ:Q→Out NdρLabelID
(C4×S3).1D7 = S3×Dic14φ: D7/C7C2 ⊆ Out C4×S31684-(C4xS3).1D7336,140
(C4×S3).2D7 = D6.Dic7φ: D7/C7C2 ⊆ Out C4×S31684(C4xS3).2D7336,27
(C4×S3).3D7 = S3×C7⋊C8φ: trivial image1684(C4xS3).3D7336,24

׿
×
𝔽