Extensions 1→N→G→Q→1 with N=C3×C6 and Q=D9

Direct product G=N×Q with N=C3×C6 and Q=D9
dρLabelID
D9×C3×C6108D9xC3xC6324,136

Semidirect products G=N:Q with N=C3×C6 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C3×C6)⋊1D9 = C2×C32⋊D9φ: D9/C3S3 ⊆ Aut C3×C654(C3xC6):1D9324,63
(C3×C6)⋊2D9 = C2×C322D9φ: D9/C3S3 ⊆ Aut C3×C6366(C3xC6):2D9324,75
(C3×C6)⋊3D9 = C6×C9⋊S3φ: D9/C9C2 ⊆ Aut C3×C6108(C3xC6):3D9324,142
(C3×C6)⋊4D9 = C2×C324D9φ: D9/C9C2 ⊆ Aut C3×C6162(C3xC6):4D9324,149

Non-split extensions G=N.Q with N=C3×C6 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C3×C6).1D9 = C32⋊Dic9φ: D9/C3S3 ⊆ Aut C3×C6108(C3xC6).1D9324,8
(C3×C6).2D9 = C27⋊C12φ: D9/C3S3 ⊆ Aut C3×C61086-(C3xC6).2D9324,12
(C3×C6).3D9 = C322Dic9φ: D9/C3S3 ⊆ Aut C3×C6366(C3xC6).3D9324,20
(C3×C6).4D9 = C2×C27⋊C6φ: D9/C3S3 ⊆ Aut C3×C6546+(C3xC6).4D9324,67
(C3×C6).5D9 = C3×Dic27φ: D9/C9C2 ⊆ Aut C3×C61082(C3xC6).5D9324,10
(C3×C6).6D9 = C27⋊Dic3φ: D9/C9C2 ⊆ Aut C3×C6324(C3xC6).6D9324,21
(C3×C6).7D9 = C6×D27φ: D9/C9C2 ⊆ Aut C3×C61082(C3xC6).7D9324,65
(C3×C6).8D9 = C2×C27⋊S3φ: D9/C9C2 ⊆ Aut C3×C6162(C3xC6).8D9324,76
(C3×C6).9D9 = C3×C9⋊Dic3φ: D9/C9C2 ⊆ Aut C3×C6108(C3xC6).9D9324,96
(C3×C6).10D9 = C325Dic9φ: D9/C9C2 ⊆ Aut C3×C6324(C3xC6).10D9324,103
(C3×C6).11D9 = C32×Dic9central extension (φ=1)108(C3xC6).11D9324,90

׿
×
𝔽