Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D21

Direct product G=N×Q with N=C2×C4 and Q=D21
dρLabelID
C2×C4×D21168C2xC4xD21336,195

Semidirect products G=N:Q with N=C2×C4 and Q=D21
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D21 = C2.D84φ: D21/C21C2 ⊆ Aut C2×C4168(C2xC4):1D21336,100
(C2×C4)⋊2D21 = C2×D84φ: D21/C21C2 ⊆ Aut C2×C4168(C2xC4):2D21336,196
(C2×C4)⋊3D21 = D8411C2φ: D21/C21C2 ⊆ Aut C2×C41682(C2xC4):3D21336,197

Non-split extensions G=N.Q with N=C2×C4 and Q=D21
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D21 = C42.4Q8φ: D21/C21C2 ⊆ Aut C2×C4336(C2xC4).1D21336,98
(C2×C4).2D21 = C84.C4φ: D21/C21C2 ⊆ Aut C2×C41682(C2xC4).2D21336,96
(C2×C4).3D21 = C84⋊C4φ: D21/C21C2 ⊆ Aut C2×C4336(C2xC4).3D21336,99
(C2×C4).4D21 = C2×Dic42φ: D21/C21C2 ⊆ Aut C2×C4336(C2xC4).4D21336,194
(C2×C4).5D21 = C2×C21⋊C8central extension (φ=1)336(C2xC4).5D21336,95
(C2×C4).6D21 = C4×Dic21central extension (φ=1)336(C2xC4).6D21336,97

׿
×
𝔽