Copied to
clipboard

G = C2×D84order 336 = 24·3·7

Direct product of C2 and D84

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D84, C287D6, C61D28, C42D42, C424D4, C127D14, C141D12, C848C22, D425C22, C42.30C23, C22.10D42, C32(C2×D28), C72(C2×D12), (C2×C84)⋊5C2, (C2×C28)⋊3S3, (C2×C12)⋊3D7, (C2×C4)⋊2D21, C2110(C2×D4), (C2×C14).28D6, (C2×C6).28D14, (C22×D21)⋊1C2, C6.30(C22×D7), C2.4(C22×D21), (C2×C42).29C22, C14.30(C22×S3), SmallGroup(336,196)

Series: Derived Chief Lower central Upper central

C1C42 — C2×D84
C1C7C21C42D42C22×D21 — C2×D84
C21C42 — C2×D84
C1C22C2×C4

Generators and relations for C2×D84
 G = < a,b,c | a2=b84=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 896 in 108 conjugacy classes, 43 normal (17 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C7, C2×C4, D4, C23, C12, D6, C2×C6, D7, C14, C14, C2×D4, C21, D12, C2×C12, C22×S3, C28, D14, C2×C14, D21, C42, C42, C2×D12, D28, C2×C28, C22×D7, C84, D42, D42, C2×C42, C2×D28, D84, C2×C84, C22×D21, C2×D84
Quotients: C1, C2, C22, S3, D4, C23, D6, D7, C2×D4, D12, C22×S3, D14, D21, C2×D12, D28, C22×D7, D42, C2×D28, D84, C22×D21, C2×D84

Smallest permutation representation of C2×D84
On 168 points
Generators in S168
(1 87)(2 88)(3 89)(4 90)(5 91)(6 92)(7 93)(8 94)(9 95)(10 96)(11 97)(12 98)(13 99)(14 100)(15 101)(16 102)(17 103)(18 104)(19 105)(20 106)(21 107)(22 108)(23 109)(24 110)(25 111)(26 112)(27 113)(28 114)(29 115)(30 116)(31 117)(32 118)(33 119)(34 120)(35 121)(36 122)(37 123)(38 124)(39 125)(40 126)(41 127)(42 128)(43 129)(44 130)(45 131)(46 132)(47 133)(48 134)(49 135)(50 136)(51 137)(52 138)(53 139)(54 140)(55 141)(56 142)(57 143)(58 144)(59 145)(60 146)(61 147)(62 148)(63 149)(64 150)(65 151)(66 152)(67 153)(68 154)(69 155)(70 156)(71 157)(72 158)(73 159)(74 160)(75 161)(76 162)(77 163)(78 164)(79 165)(80 166)(81 167)(82 168)(83 85)(84 86)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 84)(2 83)(3 82)(4 81)(5 80)(6 79)(7 78)(8 77)(9 76)(10 75)(11 74)(12 73)(13 72)(14 71)(15 70)(16 69)(17 68)(18 67)(19 66)(20 65)(21 64)(22 63)(23 62)(24 61)(25 60)(26 59)(27 58)(28 57)(29 56)(30 55)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)(85 88)(86 87)(89 168)(90 167)(91 166)(92 165)(93 164)(94 163)(95 162)(96 161)(97 160)(98 159)(99 158)(100 157)(101 156)(102 155)(103 154)(104 153)(105 152)(106 151)(107 150)(108 149)(109 148)(110 147)(111 146)(112 145)(113 144)(114 143)(115 142)(116 141)(117 140)(118 139)(119 138)(120 137)(121 136)(122 135)(123 134)(124 133)(125 132)(126 131)(127 130)(128 129)

G:=sub<Sym(168)| (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,113)(28,114)(29,115)(30,116)(31,117)(32,118)(33,119)(34,120)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,127)(42,128)(43,129)(44,130)(45,131)(46,132)(47,133)(48,134)(49,135)(50,136)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(57,143)(58,144)(59,145)(60,146)(61,147)(62,148)(63,149)(64,150)(65,151)(66,152)(67,153)(68,154)(69,155)(70,156)(71,157)(72,158)(73,159)(74,160)(75,161)(76,162)(77,163)(78,164)(79,165)(80,166)(81,167)(82,168)(83,85)(84,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,84)(2,83)(3,82)(4,81)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(85,88)(86,87)(89,168)(90,167)(91,166)(92,165)(93,164)(94,163)(95,162)(96,161)(97,160)(98,159)(99,158)(100,157)(101,156)(102,155)(103,154)(104,153)(105,152)(106,151)(107,150)(108,149)(109,148)(110,147)(111,146)(112,145)(113,144)(114,143)(115,142)(116,141)(117,140)(118,139)(119,138)(120,137)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129)>;

G:=Group( (1,87)(2,88)(3,89)(4,90)(5,91)(6,92)(7,93)(8,94)(9,95)(10,96)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,111)(26,112)(27,113)(28,114)(29,115)(30,116)(31,117)(32,118)(33,119)(34,120)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,127)(42,128)(43,129)(44,130)(45,131)(46,132)(47,133)(48,134)(49,135)(50,136)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(57,143)(58,144)(59,145)(60,146)(61,147)(62,148)(63,149)(64,150)(65,151)(66,152)(67,153)(68,154)(69,155)(70,156)(71,157)(72,158)(73,159)(74,160)(75,161)(76,162)(77,163)(78,164)(79,165)(80,166)(81,167)(82,168)(83,85)(84,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,84)(2,83)(3,82)(4,81)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,72)(14,71)(15,70)(16,69)(17,68)(18,67)(19,66)(20,65)(21,64)(22,63)(23,62)(24,61)(25,60)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(85,88)(86,87)(89,168)(90,167)(91,166)(92,165)(93,164)(94,163)(95,162)(96,161)(97,160)(98,159)(99,158)(100,157)(101,156)(102,155)(103,154)(104,153)(105,152)(106,151)(107,150)(108,149)(109,148)(110,147)(111,146)(112,145)(113,144)(114,143)(115,142)(116,141)(117,140)(118,139)(119,138)(120,137)(121,136)(122,135)(123,134)(124,133)(125,132)(126,131)(127,130)(128,129) );

G=PermutationGroup([[(1,87),(2,88),(3,89),(4,90),(5,91),(6,92),(7,93),(8,94),(9,95),(10,96),(11,97),(12,98),(13,99),(14,100),(15,101),(16,102),(17,103),(18,104),(19,105),(20,106),(21,107),(22,108),(23,109),(24,110),(25,111),(26,112),(27,113),(28,114),(29,115),(30,116),(31,117),(32,118),(33,119),(34,120),(35,121),(36,122),(37,123),(38,124),(39,125),(40,126),(41,127),(42,128),(43,129),(44,130),(45,131),(46,132),(47,133),(48,134),(49,135),(50,136),(51,137),(52,138),(53,139),(54,140),(55,141),(56,142),(57,143),(58,144),(59,145),(60,146),(61,147),(62,148),(63,149),(64,150),(65,151),(66,152),(67,153),(68,154),(69,155),(70,156),(71,157),(72,158),(73,159),(74,160),(75,161),(76,162),(77,163),(78,164),(79,165),(80,166),(81,167),(82,168),(83,85),(84,86)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,84),(2,83),(3,82),(4,81),(5,80),(6,79),(7,78),(8,77),(9,76),(10,75),(11,74),(12,73),(13,72),(14,71),(15,70),(16,69),(17,68),(18,67),(19,66),(20,65),(21,64),(22,63),(23,62),(24,61),(25,60),(26,59),(27,58),(28,57),(29,56),(30,55),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43),(85,88),(86,87),(89,168),(90,167),(91,166),(92,165),(93,164),(94,163),(95,162),(96,161),(97,160),(98,159),(99,158),(100,157),(101,156),(102,155),(103,154),(104,153),(105,152),(106,151),(107,150),(108,149),(109,148),(110,147),(111,146),(112,145),(113,144),(114,143),(115,142),(116,141),(117,140),(118,139),(119,138),(120,137),(121,136),(122,135),(123,134),(124,133),(125,132),(126,131),(127,130),(128,129)]])

90 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C7A7B7C12A12B12C12D14A···14I21A···21F28A···28L42A···42R84A···84X
order122222223446667771212121214···1421···2128···2842···4284···84
size11114242424222222222222222···22···22···22···22···2

90 irreducible representations

dim11112222222222222
type+++++++++++++++++
imageC1C2C2C2S3D4D6D6D7D12D14D14D21D28D42D42D84
kernelC2×D84D84C2×C84C22×D21C2×C28C42C28C2×C14C2×C12C14C12C2×C6C2×C4C6C4C22C2
# reps14121221346361212624

Matrix representation of C2×D84 in GL3(𝔽337) generated by

33600
010
001
,
100
080235
020439
,
33600
0202122
0160135
G:=sub<GL(3,GF(337))| [336,0,0,0,1,0,0,0,1],[1,0,0,0,80,204,0,235,39],[336,0,0,0,202,160,0,122,135] >;

C2×D84 in GAP, Magma, Sage, TeX

C_2\times D_{84}
% in TeX

G:=Group("C2xD84");
// GroupNames label

G:=SmallGroup(336,196);
// by ID

G=gap.SmallGroup(336,196);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,218,50,964,10373]);
// Polycyclic

G:=Group<a,b,c|a^2=b^84=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽