Copied to
clipboard

G = C5×PSU3(𝔽2)  order 360 = 23·32·5

Direct product of C5 and PSU3(𝔽2)

direct product, non-abelian, soluble, monomial

Aliases: C5×PSU3(𝔽2), C32⋊(C5×Q8), (C3×C15)⋊1Q8, C32⋊C4.2C10, C3⋊S3.2(C2×C10), (C5×C32⋊C4).4C2, (C5×C3⋊S3).5C22, SmallGroup(360,135)

Series: Derived Chief Lower central Upper central

C1C32C3⋊S3 — C5×PSU3(𝔽2)
C1C32C3⋊S3C5×C3⋊S3C5×C32⋊C4 — C5×PSU3(𝔽2)
C32C3⋊S3 — C5×PSU3(𝔽2)
C1C5

Generators and relations for C5×PSU3(𝔽2)
 G = < a,b,c,d,e | a5=b3=c3=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, ece-1=bc=cb, dbd-1=c-1, ebe-1=b-1c, dcd-1=b, ede-1=d-1 >

9C2
4C3
9C4
9C4
9C4
12S3
9C10
4C15
9Q8
9C20
9C20
9C20
12C5×S3
9C5×Q8

Character table of C5×PSU3(𝔽2)

 class 1234A4B4C5A5B5C5D10A10B10C10D15A15B15C15D20A20B20C20D20E20F20G20H20I20J20K20L
 size 198181818111199998888181818181818181818181818
ρ1111111111111111111111111111111    trivial
ρ2111-1-111111111111111-1-1-1-1-1-1-1111-1    linear of order 2
ρ31111-1-1111111111111-111-1-1-1-11-1-1-11    linear of order 2
ρ4111-11-1111111111111-1-1-11111-1-1-1-1-1    linear of order 2
ρ5111-1-11ζ53ζ52ζ5ζ54ζ54ζ52ζ53ζ5ζ5ζ53ζ54ζ52ζ5554545352553ζ54ζ53ζ5252    linear of order 10
ρ6111-11-1ζ53ζ52ζ5ζ54ζ54ζ52ζ53ζ5ζ5ζ53ζ54ζ525554ζ54ζ53ζ52ζ55354535252    linear of order 10
ρ7111-1-11ζ5ζ54ζ52ζ53ζ53ζ54ζ5ζ52ζ52ζ5ζ53ζ54ζ52525353554525ζ53ζ5ζ5454    linear of order 10
ρ8111111ζ54ζ5ζ53ζ52ζ52ζ5ζ54ζ53ζ53ζ54ζ52ζ5ζ53ζ53ζ52ζ52ζ54ζ5ζ53ζ54ζ52ζ54ζ5ζ5    linear of order 5
ρ9111-11-1ζ52ζ53ζ54ζ5ζ5ζ53ζ52ζ54ζ54ζ52ζ5ζ5354545ζ5ζ52ζ53ζ54525525353    linear of order 10
ρ10111-11-1ζ5ζ54ζ52ζ53ζ53ζ54ζ5ζ52ζ52ζ5ζ53ζ54525253ζ53ζ5ζ54ζ5255355454    linear of order 10
ρ11111111ζ52ζ53ζ54ζ5ζ5ζ53ζ52ζ54ζ54ζ52ζ5ζ53ζ54ζ54ζ5ζ5ζ52ζ53ζ54ζ52ζ5ζ52ζ53ζ53    linear of order 5
ρ121111-1-1ζ54ζ5ζ53ζ52ζ52ζ5ζ54ζ53ζ53ζ54ζ52ζ553ζ53ζ525254553ζ5452545ζ5    linear of order 10
ρ131111-1-1ζ53ζ52ζ5ζ54ζ54ζ52ζ53ζ5ζ5ζ53ζ54ζ525ζ5ζ545453525ζ53545352ζ52    linear of order 10
ρ14111111ζ53ζ52ζ5ζ54ζ54ζ52ζ53ζ5ζ5ζ53ζ54ζ52ζ5ζ5ζ54ζ54ζ53ζ52ζ5ζ53ζ54ζ53ζ52ζ52    linear of order 5
ρ15111-1-11ζ52ζ53ζ54ζ5ζ5ζ53ζ52ζ54ζ54ζ52ζ5ζ53ζ54545552535452ζ5ζ52ζ5353    linear of order 10
ρ161111-1-1ζ5ζ54ζ52ζ53ζ53ζ54ζ5ζ52ζ52ζ5ζ53ζ5452ζ52ζ535355452ζ553554ζ54    linear of order 10
ρ17111-1-11ζ54ζ5ζ53ζ52ζ52ζ5ζ54ζ53ζ53ζ54ζ52ζ5ζ535352525455354ζ52ζ54ζ55    linear of order 10
ρ18111111ζ5ζ54ζ52ζ53ζ53ζ54ζ5ζ52ζ52ζ5ζ53ζ54ζ52ζ52ζ53ζ53ζ5ζ54ζ52ζ5ζ53ζ5ζ54ζ54    linear of order 5
ρ19111-11-1ζ54ζ5ζ53ζ52ζ52ζ5ζ54ζ53ζ53ζ54ζ52ζ5535352ζ52ζ54ζ5ζ5354525455    linear of order 10
ρ201111-1-1ζ52ζ53ζ54ζ5ζ5ζ53ζ52ζ54ζ54ζ52ζ5ζ5354ζ54ζ55525354ζ5255253ζ53    linear of order 10
ρ212-220002222-2-2-2-22222000000000000    symplectic lifted from Q8, Schur index 2
ρ222-220005352554-2ζ54-2ζ52-2ζ53-2ζ55535452000000000000    complex lifted from C5×Q8
ρ232-220005545253-2ζ53-2ζ54-2ζ5-2ζ525255354000000000000    complex lifted from C5×Q8
ρ242-220005253545-2ζ5-2ζ53-2ζ52-2ζ545452553000000000000    complex lifted from C5×Q8
ρ252-220005455352-2ζ52-2ζ5-2ζ54-2ζ535354525000000000000    complex lifted from C5×Q8
ρ2680-100088880000-1-1-1-1000000000000    orthogonal lifted from PSU3(𝔽2)
ρ2780-1000554525300005255354000000000000    complex faithful
ρ2880-1000545535200005354525000000000000    complex faithful
ρ2980-1000525354500005452553000000000000    complex faithful
ρ3080-1000535255400005535452000000000000    complex faithful

Smallest permutation representation of C5×PSU3(𝔽2)
On 45 points
Generators in S45
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)
(1 9 42)(2 10 43)(3 6 44)(4 7 45)(5 8 41)(11 30 32)(12 26 33)(13 27 34)(14 28 35)(15 29 31)(16 22 40)(17 23 36)(18 24 37)(19 25 38)(20 21 39)
(1 33 17)(2 34 18)(3 35 19)(4 31 20)(5 32 16)(6 14 25)(7 15 21)(8 11 22)(9 12 23)(10 13 24)(26 36 42)(27 37 43)(28 38 44)(29 39 45)(30 40 41)
(6 35 44 19)(7 31 45 20)(8 32 41 16)(9 33 42 17)(10 34 43 18)(11 30 40 22)(12 26 36 23)(13 27 37 24)(14 28 38 25)(15 29 39 21)
(6 25 44 28)(7 21 45 29)(8 22 41 30)(9 23 42 26)(10 24 43 27)(11 32 40 16)(12 33 36 17)(13 34 37 18)(14 35 38 19)(15 31 39 20)

G:=sub<Sym(45)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,9,42)(2,10,43)(3,6,44)(4,7,45)(5,8,41)(11,30,32)(12,26,33)(13,27,34)(14,28,35)(15,29,31)(16,22,40)(17,23,36)(18,24,37)(19,25,38)(20,21,39), (1,33,17)(2,34,18)(3,35,19)(4,31,20)(5,32,16)(6,14,25)(7,15,21)(8,11,22)(9,12,23)(10,13,24)(26,36,42)(27,37,43)(28,38,44)(29,39,45)(30,40,41), (6,35,44,19)(7,31,45,20)(8,32,41,16)(9,33,42,17)(10,34,43,18)(11,30,40,22)(12,26,36,23)(13,27,37,24)(14,28,38,25)(15,29,39,21), (6,25,44,28)(7,21,45,29)(8,22,41,30)(9,23,42,26)(10,24,43,27)(11,32,40,16)(12,33,36,17)(13,34,37,18)(14,35,38,19)(15,31,39,20)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,9,42)(2,10,43)(3,6,44)(4,7,45)(5,8,41)(11,30,32)(12,26,33)(13,27,34)(14,28,35)(15,29,31)(16,22,40)(17,23,36)(18,24,37)(19,25,38)(20,21,39), (1,33,17)(2,34,18)(3,35,19)(4,31,20)(5,32,16)(6,14,25)(7,15,21)(8,11,22)(9,12,23)(10,13,24)(26,36,42)(27,37,43)(28,38,44)(29,39,45)(30,40,41), (6,35,44,19)(7,31,45,20)(8,32,41,16)(9,33,42,17)(10,34,43,18)(11,30,40,22)(12,26,36,23)(13,27,37,24)(14,28,38,25)(15,29,39,21), (6,25,44,28)(7,21,45,29)(8,22,41,30)(9,23,42,26)(10,24,43,27)(11,32,40,16)(12,33,36,17)(13,34,37,18)(14,35,38,19)(15,31,39,20) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45)], [(1,9,42),(2,10,43),(3,6,44),(4,7,45),(5,8,41),(11,30,32),(12,26,33),(13,27,34),(14,28,35),(15,29,31),(16,22,40),(17,23,36),(18,24,37),(19,25,38),(20,21,39)], [(1,33,17),(2,34,18),(3,35,19),(4,31,20),(5,32,16),(6,14,25),(7,15,21),(8,11,22),(9,12,23),(10,13,24),(26,36,42),(27,37,43),(28,38,44),(29,39,45),(30,40,41)], [(6,35,44,19),(7,31,45,20),(8,32,41,16),(9,33,42,17),(10,34,43,18),(11,30,40,22),(12,26,36,23),(13,27,37,24),(14,28,38,25),(15,29,39,21)], [(6,25,44,28),(7,21,45,29),(8,22,41,30),(9,23,42,26),(10,24,43,27),(11,32,40,16),(12,33,36,17),(13,34,37,18),(14,35,38,19),(15,31,39,20)]])

Matrix representation of C5×PSU3(𝔽2) in GL10(𝔽61)

9000000000
0900000000
0010000000
0001000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
1000000000
0100000000
0000000010
0000000001
006060606060606060
0010000000
0001000000
0000100000
0000010000
0000001000
,
1000000000
0100000000
0000100000
0010000000
0001000000
0000000100
0000010000
0000001000
006060606060606060
0000000010
,
395300000000
532200000000
0010000000
0000010000
0000000010
0000100000
0000000100
006060606060606060
0001000000
0000001000
,
06000000000
1000000000
0010000000
0000001000
006060606060606060
0000000001
0000100000
0000010000
0000000100
0000000010

G:=sub<GL(10,GF(61))| [9,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,0,0,60,0,1,0,0,0,0,0,0,0,60,0,0,1,0,0,0,0,0,0,60,0,0,0,1,0,0,0,0,0,60,0,0,0,0,1,0,0,0,0,60,0,0,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,0,1,60,0,0,0,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,0,0,0,0,0,1,0,0,0,60,0,0,0,1,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,0,1,60,0,0,0,0,0,0,1,0,0,60,0,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,0,0,60,0],[39,53,0,0,0,0,0,0,0,0,53,22,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,0,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,0,1,0,60,0,0,0,0,0,1,0,0,0,60,0,0,0,0,0,0,0,0,0,60,0,1,0,0,0,0,0,0,1,60,0,0,0,0,0,0,1,0,0,60,0,0,0,0,0,0,0,0,0,60,0,0],[0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,0,0,1,0,60,0,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,60,0,1,0,0,0,0,0,0,0,60,0,0,1,0,0,0,0,0,1,60,0,0,0,0,0,0,0,0,0,60,0,0,0,1,0,0,0,0,0,60,0,0,0,0,1,0,0,0,0,60,1,0,0,0,0] >;

C5×PSU3(𝔽2) in GAP, Magma, Sage, TeX

C_5\times {\rm PSU}_3({\mathbb F}_2)
% in TeX

G:=Group("C5xPSU(3,2)");
// GroupNames label

G:=SmallGroup(360,135);
// by ID

G=gap.SmallGroup(360,135);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-3,3,120,265,127,8404,1810,142,11525,1451,455]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*c*e^-1=b*c=c*b,d*b*d^-1=c^-1,e*b*e^-1=b^-1*c,d*c*d^-1=b,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C5×PSU3(𝔽2) in TeX
Character table of C5×PSU3(𝔽2) in TeX

׿
×
𝔽