direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D186, C2×D93, C62⋊S3, C6⋊D31, C3⋊2D62, C31⋊2D6, C186⋊1C2, C93⋊2C22, sometimes denoted D372 or Dih186 or Dih372, SmallGroup(372,14)
Series: Derived ►Chief ►Lower central ►Upper central
C93 — D186 |
Generators and relations for D186
G = < a,b | a186=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186)
(1 186)(2 185)(3 184)(4 183)(5 182)(6 181)(7 180)(8 179)(9 178)(10 177)(11 176)(12 175)(13 174)(14 173)(15 172)(16 171)(17 170)(18 169)(19 168)(20 167)(21 166)(22 165)(23 164)(24 163)(25 162)(26 161)(27 160)(28 159)(29 158)(30 157)(31 156)(32 155)(33 154)(34 153)(35 152)(36 151)(37 150)(38 149)(39 148)(40 147)(41 146)(42 145)(43 144)(44 143)(45 142)(46 141)(47 140)(48 139)(49 138)(50 137)(51 136)(52 135)(53 134)(54 133)(55 132)(56 131)(57 130)(58 129)(59 128)(60 127)(61 126)(62 125)(63 124)(64 123)(65 122)(66 121)(67 120)(68 119)(69 118)(70 117)(71 116)(72 115)(73 114)(74 113)(75 112)(76 111)(77 110)(78 109)(79 108)(80 107)(81 106)(82 105)(83 104)(84 103)(85 102)(86 101)(87 100)(88 99)(89 98)(90 97)(91 96)(92 95)(93 94)
G:=sub<Sym(186)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186), (1,186)(2,185)(3,184)(4,183)(5,182)(6,181)(7,180)(8,179)(9,178)(10,177)(11,176)(12,175)(13,174)(14,173)(15,172)(16,171)(17,170)(18,169)(19,168)(20,167)(21,166)(22,165)(23,164)(24,163)(25,162)(26,161)(27,160)(28,159)(29,158)(30,157)(31,156)(32,155)(33,154)(34,153)(35,152)(36,151)(37,150)(38,149)(39,148)(40,147)(41,146)(42,145)(43,144)(44,143)(45,142)(46,141)(47,140)(48,139)(49,138)(50,137)(51,136)(52,135)(53,134)(54,133)(55,132)(56,131)(57,130)(58,129)(59,128)(60,127)(61,126)(62,125)(63,124)(64,123)(65,122)(66,121)(67,120)(68,119)(69,118)(70,117)(71,116)(72,115)(73,114)(74,113)(75,112)(76,111)(77,110)(78,109)(79,108)(80,107)(81,106)(82,105)(83,104)(84,103)(85,102)(86,101)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186), (1,186)(2,185)(3,184)(4,183)(5,182)(6,181)(7,180)(8,179)(9,178)(10,177)(11,176)(12,175)(13,174)(14,173)(15,172)(16,171)(17,170)(18,169)(19,168)(20,167)(21,166)(22,165)(23,164)(24,163)(25,162)(26,161)(27,160)(28,159)(29,158)(30,157)(31,156)(32,155)(33,154)(34,153)(35,152)(36,151)(37,150)(38,149)(39,148)(40,147)(41,146)(42,145)(43,144)(44,143)(45,142)(46,141)(47,140)(48,139)(49,138)(50,137)(51,136)(52,135)(53,134)(54,133)(55,132)(56,131)(57,130)(58,129)(59,128)(60,127)(61,126)(62,125)(63,124)(64,123)(65,122)(66,121)(67,120)(68,119)(69,118)(70,117)(71,116)(72,115)(73,114)(74,113)(75,112)(76,111)(77,110)(78,109)(79,108)(80,107)(81,106)(82,105)(83,104)(84,103)(85,102)(86,101)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186)], [(1,186),(2,185),(3,184),(4,183),(5,182),(6,181),(7,180),(8,179),(9,178),(10,177),(11,176),(12,175),(13,174),(14,173),(15,172),(16,171),(17,170),(18,169),(19,168),(20,167),(21,166),(22,165),(23,164),(24,163),(25,162),(26,161),(27,160),(28,159),(29,158),(30,157),(31,156),(32,155),(33,154),(34,153),(35,152),(36,151),(37,150),(38,149),(39,148),(40,147),(41,146),(42,145),(43,144),(44,143),(45,142),(46,141),(47,140),(48,139),(49,138),(50,137),(51,136),(52,135),(53,134),(54,133),(55,132),(56,131),(57,130),(58,129),(59,128),(60,127),(61,126),(62,125),(63,124),(64,123),(65,122),(66,121),(67,120),(68,119),(69,118),(70,117),(71,116),(72,115),(73,114),(74,113),(75,112),(76,111),(77,110),(78,109),(79,108),(80,107),(81,106),(82,105),(83,104),(84,103),(85,102),(86,101),(87,100),(88,99),(89,98),(90,97),(91,96),(92,95),(93,94)]])
96 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 6 | 31A | ··· | 31O | 62A | ··· | 62O | 93A | ··· | 93AD | 186A | ··· | 186AD |
order | 1 | 2 | 2 | 2 | 3 | 6 | 31 | ··· | 31 | 62 | ··· | 62 | 93 | ··· | 93 | 186 | ··· | 186 |
size | 1 | 1 | 93 | 93 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
96 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D6 | D31 | D62 | D93 | D186 |
kernel | D186 | D93 | C186 | C62 | C31 | C6 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 15 | 15 | 30 | 30 |
Matrix representation of D186 ►in GL2(𝔽373) generated by
101 | 173 |
295 | 136 |
101 | 16 |
295 | 272 |
G:=sub<GL(2,GF(373))| [101,295,173,136],[101,295,16,272] >;
D186 in GAP, Magma, Sage, TeX
D_{186}
% in TeX
G:=Group("D186");
// GroupNames label
G:=SmallGroup(372,14);
// by ID
G=gap.SmallGroup(372,14);
# by ID
G:=PCGroup([4,-2,-2,-3,-31,98,5763]);
// Polycyclic
G:=Group<a,b|a^186=b^2=1,b*a*b=a^-1>;
// generators/relations
Export