Extensions 1→N→G→Q→1 with N=C21 and Q=C18

Direct product G=N×Q with N=C21 and Q=C18
dρLabelID
C3×C126378C3xC126378,44

Semidirect products G=N:Q with N=C21 and Q=C18
extensionφ:Q→Aut NdρLabelID
C211C18 = D21⋊C9φ: C18/C3C6 ⊆ Aut C211266C21:1C18378,21
C212C18 = C3×C7⋊C18φ: C18/C3C6 ⊆ Aut C21189C21:2C18378,10
C213C18 = S3×C7⋊C9φ: C18/C3C6 ⊆ Aut C211266C21:3C18378,16
C214C18 = C6×C7⋊C9φ: C18/C6C3 ⊆ Aut C21378C21:4C18378,26
C215C18 = C9×D21φ: C18/C9C2 ⊆ Aut C211262C21:5C18378,37
C216C18 = D7×C3×C9φ: C18/C9C2 ⊆ Aut C21189C21:6C18378,29
C217C18 = S3×C63φ: C18/C9C2 ⊆ Aut C211262C21:7C18378,33

Non-split extensions G=N.Q with N=C21 and Q=C18
extensionφ:Q→Aut NdρLabelID
C21.C18 = C7⋊C54φ: C18/C3C6 ⊆ Aut C211896C21.C18378,1
C21.2C18 = C2×C7⋊C27φ: C18/C6C3 ⊆ Aut C213783C21.2C18378,2
C21.3C18 = D7×C27φ: C18/C9C2 ⊆ Aut C211892C21.3C18378,4

׿
×
𝔽