Copied to
clipboard

G = D21⋊C9order 378 = 2·33·7

The semidirect product of D21 and C9 acting via C9/C3=C3

metacyclic, supersoluble, monomial, A-group

Aliases: D21⋊C9, C211C18, C32.2F7, C7⋊C9⋊S3, C7⋊(S3×C9), C3⋊(C7⋊C18), (C3×D21).C3, C21.5(C3×S3), (C3×C21).1C6, C3.5(C3⋊F7), (C3×C7⋊C9)⋊1C2, SmallGroup(378,21)

Series: Derived Chief Lower central Upper central

C1C21 — D21⋊C9
C1C7C21C3×C21C3×C7⋊C9 — D21⋊C9
C21 — D21⋊C9
C1C3

Generators and relations for D21⋊C9
 G = < a,b,c | a21=b2=c9=1, bab=a-1, cac-1=a4, cbc-1=a3b >

21C2
2C3
7S3
21C6
7C9
14C9
3D7
2C21
7C3×S3
21C18
7C3×C9
3C3×D7
2C7⋊C9
7S3×C9
3C7⋊C18

Smallest permutation representation of D21⋊C9
On 126 points
Generators in S126
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 80)(2 79)(3 78)(4 77)(5 76)(6 75)(7 74)(8 73)(9 72)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 84)(19 83)(20 82)(21 81)(22 85)(23 105)(24 104)(25 103)(26 102)(27 101)(28 100)(29 99)(30 98)(31 97)(32 96)(33 95)(34 94)(35 93)(36 92)(37 91)(38 90)(39 89)(40 88)(41 87)(42 86)(43 106)(44 126)(45 125)(46 124)(47 123)(48 122)(49 121)(50 120)(51 119)(52 118)(53 117)(54 116)(55 115)(56 114)(57 113)(58 112)(59 111)(60 110)(61 109)(62 108)(63 107)
(1 57 40 15 50 33 8 43 26)(2 52 23 16 45 37 9 59 30)(3 47 27 17 61 41 10 54 34)(4 63 31 18 56 24 11 49 38)(5 58 35 19 51 28 12 44 42)(6 53 39 20 46 32 13 60 25)(7 48 22 21 62 36 14 55 29)(64 115 105 71 122 91 78 108 98)(65 110 88 72 117 95 79 124 102)(66 126 92 73 112 99 80 119 85)(67 121 96 74 107 103 81 114 89)(68 116 100 75 123 86 82 109 93)(69 111 104 76 118 90 83 125 97)(70 106 87 77 113 94 84 120 101)

G:=sub<Sym(126)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,84)(19,83)(20,82)(21,81)(22,85)(23,105)(24,104)(25,103)(26,102)(27,101)(28,100)(29,99)(30,98)(31,97)(32,96)(33,95)(34,94)(35,93)(36,92)(37,91)(38,90)(39,89)(40,88)(41,87)(42,86)(43,106)(44,126)(45,125)(46,124)(47,123)(48,122)(49,121)(50,120)(51,119)(52,118)(53,117)(54,116)(55,115)(56,114)(57,113)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107), (1,57,40,15,50,33,8,43,26)(2,52,23,16,45,37,9,59,30)(3,47,27,17,61,41,10,54,34)(4,63,31,18,56,24,11,49,38)(5,58,35,19,51,28,12,44,42)(6,53,39,20,46,32,13,60,25)(7,48,22,21,62,36,14,55,29)(64,115,105,71,122,91,78,108,98)(65,110,88,72,117,95,79,124,102)(66,126,92,73,112,99,80,119,85)(67,121,96,74,107,103,81,114,89)(68,116,100,75,123,86,82,109,93)(69,111,104,76,118,90,83,125,97)(70,106,87,77,113,94,84,120,101)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,84)(19,83)(20,82)(21,81)(22,85)(23,105)(24,104)(25,103)(26,102)(27,101)(28,100)(29,99)(30,98)(31,97)(32,96)(33,95)(34,94)(35,93)(36,92)(37,91)(38,90)(39,89)(40,88)(41,87)(42,86)(43,106)(44,126)(45,125)(46,124)(47,123)(48,122)(49,121)(50,120)(51,119)(52,118)(53,117)(54,116)(55,115)(56,114)(57,113)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107), (1,57,40,15,50,33,8,43,26)(2,52,23,16,45,37,9,59,30)(3,47,27,17,61,41,10,54,34)(4,63,31,18,56,24,11,49,38)(5,58,35,19,51,28,12,44,42)(6,53,39,20,46,32,13,60,25)(7,48,22,21,62,36,14,55,29)(64,115,105,71,122,91,78,108,98)(65,110,88,72,117,95,79,124,102)(66,126,92,73,112,99,80,119,85)(67,121,96,74,107,103,81,114,89)(68,116,100,75,123,86,82,109,93)(69,111,104,76,118,90,83,125,97)(70,106,87,77,113,94,84,120,101) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,80),(2,79),(3,78),(4,77),(5,76),(6,75),(7,74),(8,73),(9,72),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,84),(19,83),(20,82),(21,81),(22,85),(23,105),(24,104),(25,103),(26,102),(27,101),(28,100),(29,99),(30,98),(31,97),(32,96),(33,95),(34,94),(35,93),(36,92),(37,91),(38,90),(39,89),(40,88),(41,87),(42,86),(43,106),(44,126),(45,125),(46,124),(47,123),(48,122),(49,121),(50,120),(51,119),(52,118),(53,117),(54,116),(55,115),(56,114),(57,113),(58,112),(59,111),(60,110),(61,109),(62,108),(63,107)], [(1,57,40,15,50,33,8,43,26),(2,52,23,16,45,37,9,59,30),(3,47,27,17,61,41,10,54,34),(4,63,31,18,56,24,11,49,38),(5,58,35,19,51,28,12,44,42),(6,53,39,20,46,32,13,60,25),(7,48,22,21,62,36,14,55,29),(64,115,105,71,122,91,78,108,98),(65,110,88,72,117,95,79,124,102),(66,126,92,73,112,99,80,119,85),(67,121,96,74,107,103,81,114,89),(68,116,100,75,123,86,82,109,93),(69,111,104,76,118,90,83,125,97),(70,106,87,77,113,94,84,120,101)]])

36 conjugacy classes

class 1  2 3A3B3C3D3E6A6B 7 9A···9F9G···9L18A···18F21A···21H
order12333336679···99···918···1821···21
size12111222212167···714···1421···216···6

36 irreducible representations

dim1111112226666
type+++++
imageC1C2C3C6C9C18S3C3×S3S3×C9F7C7⋊C18C3⋊F7D21⋊C9
kernelD21⋊C9C3×C7⋊C9C3×D21C3×C21D21C21C7⋊C9C21C7C32C3C3C1
# reps1122661261224

Matrix representation of D21⋊C9 in GL6(𝔽127)

06879000
202059000
02059000
000010819
00090056
00019037
,
000010819
00090056
00019037
06879000
202059000
02059000
,
11545120000
8526102000
867113000
00011545120
0008526102
000867113

G:=sub<GL(6,GF(127))| [0,20,0,0,0,0,68,20,20,0,0,0,79,59,59,0,0,0,0,0,0,0,90,19,0,0,0,108,0,0,0,0,0,19,56,37],[0,0,0,0,20,0,0,0,0,68,20,20,0,0,0,79,59,59,0,90,19,0,0,0,108,0,0,0,0,0,19,56,37,0,0,0],[115,85,86,0,0,0,45,26,7,0,0,0,120,102,113,0,0,0,0,0,0,115,85,86,0,0,0,45,26,7,0,0,0,120,102,113] >;

D21⋊C9 in GAP, Magma, Sage, TeX

D_{21}\rtimes C_9
% in TeX

G:=Group("D21:C9");
// GroupNames label

G:=SmallGroup(378,21);
// by ID

G=gap.SmallGroup(378,21);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,36,723,8104,1359]);
// Polycyclic

G:=Group<a,b,c|a^21=b^2=c^9=1,b*a*b=a^-1,c*a*c^-1=a^4,c*b*c^-1=a^3*b>;
// generators/relations

Export

Subgroup lattice of D21⋊C9 in TeX

׿
×
𝔽