Copied to
clipboard

G = C9xD21order 378 = 2·33·7

Direct product of C9 and D21

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C9xD21, C63:3S3, C21:5C18, C3:(C9xD7), C7:3(S3xC9), (C3xC9):1D7, (C3xC63):7C2, (C3xC21).9C6, C3.4(C3xD21), C21.14(C3xS3), (C3xD21).2C3, C32.2(C3xD7), SmallGroup(378,37)

Series: Derived Chief Lower central Upper central

C1C21 — C9xD21
C1C7C21C3xC21C3xC63 — C9xD21
C21 — C9xD21
C1C9

Generators and relations for C9xD21
 G = < a,b,c | a9=b21=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 116 in 28 conjugacy classes, 15 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, C9, D7, C18, C3xS3, C3xD7, D21, S3xC9, C9xD7, C3xD21, C9xD21
21C2
2C3
7S3
21C6
2C9
3D7
2C21
7C3xS3
21C18
3C3xD7
2C63
7S3xC9
3C9xD7

Smallest permutation representation of C9xD21
On 126 points
Generators in S126
(1 54 24 15 47 38 8 61 31)(2 55 25 16 48 39 9 62 32)(3 56 26 17 49 40 10 63 33)(4 57 27 18 50 41 11 43 34)(5 58 28 19 51 42 12 44 35)(6 59 29 20 52 22 13 45 36)(7 60 30 21 53 23 14 46 37)(64 119 100 71 126 86 78 112 93)(65 120 101 72 106 87 79 113 94)(66 121 102 73 107 88 80 114 95)(67 122 103 74 108 89 81 115 96)(68 123 104 75 109 90 82 116 97)(69 124 105 76 110 91 83 117 98)(70 125 85 77 111 92 84 118 99)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 74)(2 73)(3 72)(4 71)(5 70)(6 69)(7 68)(8 67)(9 66)(10 65)(11 64)(12 84)(13 83)(14 82)(15 81)(16 80)(17 79)(18 78)(19 77)(20 76)(21 75)(22 91)(23 90)(24 89)(25 88)(26 87)(27 86)(28 85)(29 105)(30 104)(31 103)(32 102)(33 101)(34 100)(35 99)(36 98)(37 97)(38 96)(39 95)(40 94)(41 93)(42 92)(43 119)(44 118)(45 117)(46 116)(47 115)(48 114)(49 113)(50 112)(51 111)(52 110)(53 109)(54 108)(55 107)(56 106)(57 126)(58 125)(59 124)(60 123)(61 122)(62 121)(63 120)

G:=sub<Sym(126)| (1,54,24,15,47,38,8,61,31)(2,55,25,16,48,39,9,62,32)(3,56,26,17,49,40,10,63,33)(4,57,27,18,50,41,11,43,34)(5,58,28,19,51,42,12,44,35)(6,59,29,20,52,22,13,45,36)(7,60,30,21,53,23,14,46,37)(64,119,100,71,126,86,78,112,93)(65,120,101,72,106,87,79,113,94)(66,121,102,73,107,88,80,114,95)(67,122,103,74,108,89,81,115,96)(68,123,104,75,109,90,82,116,97)(69,124,105,76,110,91,83,117,98)(70,125,85,77,111,92,84,118,99), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,84)(13,83)(14,82)(15,81)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,91)(23,90)(24,89)(25,88)(26,87)(27,86)(28,85)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,93)(42,92)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,113)(50,112)(51,111)(52,110)(53,109)(54,108)(55,107)(56,106)(57,126)(58,125)(59,124)(60,123)(61,122)(62,121)(63,120)>;

G:=Group( (1,54,24,15,47,38,8,61,31)(2,55,25,16,48,39,9,62,32)(3,56,26,17,49,40,10,63,33)(4,57,27,18,50,41,11,43,34)(5,58,28,19,51,42,12,44,35)(6,59,29,20,52,22,13,45,36)(7,60,30,21,53,23,14,46,37)(64,119,100,71,126,86,78,112,93)(65,120,101,72,106,87,79,113,94)(66,121,102,73,107,88,80,114,95)(67,122,103,74,108,89,81,115,96)(68,123,104,75,109,90,82,116,97)(69,124,105,76,110,91,83,117,98)(70,125,85,77,111,92,84,118,99), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,84)(13,83)(14,82)(15,81)(16,80)(17,79)(18,78)(19,77)(20,76)(21,75)(22,91)(23,90)(24,89)(25,88)(26,87)(27,86)(28,85)(29,105)(30,104)(31,103)(32,102)(33,101)(34,100)(35,99)(36,98)(37,97)(38,96)(39,95)(40,94)(41,93)(42,92)(43,119)(44,118)(45,117)(46,116)(47,115)(48,114)(49,113)(50,112)(51,111)(52,110)(53,109)(54,108)(55,107)(56,106)(57,126)(58,125)(59,124)(60,123)(61,122)(62,121)(63,120) );

G=PermutationGroup([[(1,54,24,15,47,38,8,61,31),(2,55,25,16,48,39,9,62,32),(3,56,26,17,49,40,10,63,33),(4,57,27,18,50,41,11,43,34),(5,58,28,19,51,42,12,44,35),(6,59,29,20,52,22,13,45,36),(7,60,30,21,53,23,14,46,37),(64,119,100,71,126,86,78,112,93),(65,120,101,72,106,87,79,113,94),(66,121,102,73,107,88,80,114,95),(67,122,103,74,108,89,81,115,96),(68,123,104,75,109,90,82,116,97),(69,124,105,76,110,91,83,117,98),(70,125,85,77,111,92,84,118,99)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,74),(2,73),(3,72),(4,71),(5,70),(6,69),(7,68),(8,67),(9,66),(10,65),(11,64),(12,84),(13,83),(14,82),(15,81),(16,80),(17,79),(18,78),(19,77),(20,76),(21,75),(22,91),(23,90),(24,89),(25,88),(26,87),(27,86),(28,85),(29,105),(30,104),(31,103),(32,102),(33,101),(34,100),(35,99),(36,98),(37,97),(38,96),(39,95),(40,94),(41,93),(42,92),(43,119),(44,118),(45,117),(46,116),(47,115),(48,114),(49,113),(50,112),(51,111),(52,110),(53,109),(54,108),(55,107),(56,106),(57,126),(58,125),(59,124),(60,123),(61,122),(62,121),(63,120)]])

108 conjugacy classes

class 1  2 3A3B3C3D3E6A6B7A7B7C9A···9F9G···9L18A···18F21A···21X63A···63BB
order1233333667779···99···918···1821···2163···63
size1211122221212221···12···221···212···22···2

108 irreducible representations

dim111111222222222
type+++++
imageC1C2C3C6C9C18S3D7C3xS3D21C3xD7S3xC9C9xD7C3xD21C9xD21
kernelC9xD21C3xC63C3xD21C3xC21D21C21C63C3xC9C21C9C32C7C3C3C1
# reps112266132666181236

Matrix representation of C9xD21 in GL2(F127) generated by

520
052
,
940
050
,
050
940
G:=sub<GL(2,GF(127))| [52,0,0,52],[94,0,0,50],[0,94,50,0] >;

C9xD21 in GAP, Magma, Sage, TeX

C_9\times D_{21}
% in TeX

G:=Group("C9xD21");
// GroupNames label

G:=SmallGroup(378,37);
// by ID

G=gap.SmallGroup(378,37);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,36,723,8104]);
// Polycyclic

G:=Group<a,b,c|a^9=b^21=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C9xD21 in TeX

׿
x
:
Z
F
o
wr
Q
<