# Extensions 1→N→G→Q→1 with N=C15 and Q=C4×S3

Direct product G=N×Q with N=C15 and Q=C4×S3
dρLabelID
S3×C601202S3xC60360,96

Semidirect products G=N:Q with N=C15 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C151(C4×S3) = C3⋊S3×F5φ: C4×S3/C3C2×C4 ⊆ Aut C1545C15:1(C4xS3)360,127
C152(C4×S3) = C3⋊F5⋊S3φ: C4×S3/C3C2×C4 ⊆ Aut C15308+C15:2(C4xS3)360,129
C153(C4×S3) = S3×C3⋊F5φ: C4×S3/S3C4 ⊆ Aut C15308C15:3(C4xS3)360,128
C154(C4×S3) = C3×S3×F5φ: C4×S3/S3C4 ⊆ Aut C15308C15:4(C4xS3)360,126
C155(C4×S3) = C3⋊S3×Dic5φ: C4×S3/C6C22 ⊆ Aut C15180C15:5(C4xS3)360,66
C156(C4×S3) = C30.D6φ: C4×S3/C6C22 ⊆ Aut C15180C15:6(C4xS3)360,67
C157(C4×S3) = Dic3×D15φ: C4×S3/C6C22 ⊆ Aut C151204-C15:7(C4xS3)360,77
C158(C4×S3) = D30.S3φ: C4×S3/C6C22 ⊆ Aut C151204C15:8(C4xS3)360,84
C159(C4×S3) = Dic15⋊S3φ: C4×S3/C6C22 ⊆ Aut C15604C15:9(C4xS3)360,85
C1510(C4×S3) = C6.D30φ: C4×S3/Dic3C2 ⊆ Aut C15604+C15:10(C4xS3)360,79
C1511(C4×S3) = C3×D30.C2φ: C4×S3/Dic3C2 ⊆ Aut C151204C15:11(C4xS3)360,60
C1512(C4×S3) = C5×C6.D6φ: C4×S3/Dic3C2 ⊆ Aut C15604C15:12(C4xS3)360,73
C1513(C4×S3) = C4×C3⋊D15φ: C4×S3/C12C2 ⊆ Aut C15180C15:13(C4xS3)360,111
C1514(C4×S3) = C12×D15φ: C4×S3/C12C2 ⊆ Aut C151202C15:14(C4xS3)360,101
C1515(C4×S3) = C3⋊S3×C20φ: C4×S3/C12C2 ⊆ Aut C15180C15:15(C4xS3)360,106
C1516(C4×S3) = S3×Dic15φ: C4×S3/D6C2 ⊆ Aut C151204-C15:16(C4xS3)360,78
C1517(C4×S3) = C3×S3×Dic5φ: C4×S3/D6C2 ⊆ Aut C151204C15:17(C4xS3)360,59
C1518(C4×S3) = C5×S3×Dic3φ: C4×S3/D6C2 ⊆ Aut C151204C15:18(C4xS3)360,72

Non-split extensions G=N.Q with N=C15 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C15.(C4×S3) = D9×F5φ: C4×S3/C3C2×C4 ⊆ Aut C15458+C15.(C4xS3)360,39
C15.2(C4×S3) = D9×Dic5φ: C4×S3/C6C22 ⊆ Aut C151804-C15.2(C4xS3)360,8
C15.3(C4×S3) = D90.C2φ: C4×S3/C6C22 ⊆ Aut C151804+C15.3(C4xS3)360,9
C15.4(C4×S3) = C4×D45φ: C4×S3/C12C2 ⊆ Aut C151802C15.4(C4xS3)360,26
C15.5(C4×S3) = D9×C20φ: C4×S3/C12C2 ⊆ Aut C151802C15.5(C4xS3)360,21

׿
×
𝔽