Extensions 1→N→G→Q→1 with N=C15 and Q=C3⋊D4

Direct product G=N×Q with N=C15 and Q=C3⋊D4
dρLabelID
C15×C3⋊D4602C15xC3:D4360,99

Semidirect products G=N:Q with N=C15 and Q=C3⋊D4
extensionφ:Q→Aut NdρLabelID
C151(C3⋊D4) = C30.12D6φ: C3⋊D4/C6C22 ⊆ Aut C15180C15:1(C3:D4)360,68
C152(C3⋊D4) = C327D20φ: C3⋊D4/C6C22 ⊆ Aut C15180C15:2(C3:D4)360,69
C153(C3⋊D4) = D6⋊D15φ: C3⋊D4/C6C22 ⊆ Aut C151204-C15:3(C3:D4)360,80
C154(C3⋊D4) = D62D15φ: C3⋊D4/C6C22 ⊆ Aut C15604+C15:4(C3:D4)360,82
C155(C3⋊D4) = D30⋊S3φ: C3⋊D4/C6C22 ⊆ Aut C15604C15:5(C3:D4)360,86
C156(C3⋊D4) = C323D20φ: C3⋊D4/C6C22 ⊆ Aut C151204C15:6(C3:D4)360,87
C157(C3⋊D4) = C3⋊D60φ: C3⋊D4/Dic3C2 ⊆ Aut C15604+C15:7(C3:D4)360,81
C158(C3⋊D4) = C3×C3⋊D20φ: C3⋊D4/Dic3C2 ⊆ Aut C15604C15:8(C3:D4)360,62
C159(C3⋊D4) = C5×C3⋊D12φ: C3⋊D4/Dic3C2 ⊆ Aut C15604C15:9(C3:D4)360,75
C1510(C3⋊D4) = C3×C15⋊D4φ: C3⋊D4/D6C2 ⊆ Aut C15604C15:10(C3:D4)360,61
C1511(C3⋊D4) = C5×D6⋊S3φ: C3⋊D4/D6C2 ⊆ Aut C151204C15:11(C3:D4)360,74
C1512(C3⋊D4) = C62⋊D5φ: C3⋊D4/C2×C6C2 ⊆ Aut C15180C15:12(C3:D4)360,114
C1513(C3⋊D4) = C3×C157D4φ: C3⋊D4/C2×C6C2 ⊆ Aut C15602C15:13(C3:D4)360,104
C1514(C3⋊D4) = C5×C327D4φ: C3⋊D4/C2×C6C2 ⊆ Aut C15180C15:14(C3:D4)360,109

Non-split extensions G=N.Q with N=C15 and Q=C3⋊D4
extensionφ:Q→Aut NdρLabelID
C15.1(C3⋊D4) = C45⋊D4φ: C3⋊D4/C6C22 ⊆ Aut C151804-C15.1(C3:D4)360,12
C15.2(C3⋊D4) = C9⋊D20φ: C3⋊D4/C6C22 ⊆ Aut C151804+C15.2(C3:D4)360,13
C15.3(C3⋊D4) = C457D4φ: C3⋊D4/C2×C6C2 ⊆ Aut C151802C15.3(C3:D4)360,29
C15.4(C3⋊D4) = C5×C9⋊D4φ: C3⋊D4/C2×C6C2 ⊆ Aut C151802C15.4(C3:D4)360,24

׿
×
𝔽