Copied to
clipboard

## G = C2×C62⋊C6order 432 = 24·33

### Direct product of C2 and C62⋊C6

Series: Derived Chief Lower central Upper central

 Derived series C1 — C62 — C2×C62⋊C6
 Chief series C1 — C3 — C32 — C62 — C32⋊A4 — C62⋊C6 — C2×C62⋊C6
 Lower central C62 — C2×C62⋊C6
 Upper central C1 — C2

Generators and relations for C2×C62⋊C6
G = < a,b,c,d | a2=b6=c6=d6=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=b3c2 >

Subgroups: 1543 in 192 conjugacy classes, 25 normal (19 characteristic)
C1, C2, C2 [×6], C3, C3 [×3], C22, C22 [×12], S3 [×12], C6, C6 [×13], C23, C23 [×6], C32, C32 [×2], A4 [×2], D6 [×38], C2×C6, C2×C6 [×10], C24, C3×S3 [×2], C3⋊S3 [×2], C3⋊S3 [×2], C3×C6, C3×C6 [×4], C2×A4 [×4], C22×S3 [×20], C22×C6, C22×C6, He3, C3×A4, C3×A4, S3×C6, C2×C3⋊S3, C2×C3⋊S3 [×9], C62, C62 [×2], C22×A4, S3×C23 [×2], C32⋊C6 [×2], C2×He3, S3×A4 [×2], C6×A4, C6×A4, C22×C3⋊S3 [×2], C22×C3⋊S3 [×4], C2×C62, C32⋊A4, C2×C32⋊C6, C2×S3×A4, C23×C3⋊S3, C62⋊C6 [×2], C2×C32⋊A4, C2×C62⋊C6
Quotients: C1, C2 [×3], C3, C22, S3, C6 [×3], A4, D6, C2×C6, C3×S3, C2×A4 [×3], S3×C6, C22×A4, C32⋊C6, S3×A4, C2×C32⋊C6, C2×S3×A4, C62⋊C6, C2×C62⋊C6

Permutation representations of C2×C62⋊C6
On 18 points - transitive group 18T148
Generators in S18
(1 2)(3 4)(5 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)
(1 2)(3 4)(5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)
(1 3 5)(2 4 6)(7 12 8 10 9 11)(13 14 15 16 17 18)
(1 16 7 2 13 10)(3 18 9 6 17 11)(4 15 12 5 14 8)

G:=sub<Sym(18)| (1,2)(3,4)(5,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18), (1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18), (1,3,5)(2,4,6)(7,12,8,10,9,11)(13,14,15,16,17,18), (1,16,7,2,13,10)(3,18,9,6,17,11)(4,15,12,5,14,8)>;

G:=Group( (1,2)(3,4)(5,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18), (1,2)(3,4)(5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18), (1,3,5)(2,4,6)(7,12,8,10,9,11)(13,14,15,16,17,18), (1,16,7,2,13,10)(3,18,9,6,17,11)(4,15,12,5,14,8) );

G=PermutationGroup([(1,2),(3,4),(5,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18)], [(1,2),(3,4),(5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18)], [(1,3,5),(2,4,6),(7,12,8,10,9,11),(13,14,15,16,17,18)], [(1,16,7,2,13,10),(3,18,9,6,17,11),(4,15,12,5,14,8)])

G:=TransitiveGroup(18,148);

32 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 3A 3B 3C 3D 3E 3F 6A 6B ··· 6J 6K 6L 6M 6N 6O 6P 6Q 6R order 1 2 2 2 2 2 2 2 3 3 3 3 3 3 6 6 ··· 6 6 6 6 6 6 6 6 6 size 1 1 3 3 9 9 27 27 2 6 12 12 24 24 2 6 ··· 6 12 12 24 24 36 36 36 36

32 irreducible representations

 dim 1 1 1 1 1 1 2 2 2 2 3 3 3 6 6 6 6 6 6 type + + + + + + + + + + + + + + image C1 C2 C2 C3 C6 C6 S3 D6 C3×S3 S3×C6 A4 C2×A4 C2×A4 C32⋊C6 S3×A4 C2×C32⋊C6 C2×S3×A4 C62⋊C6 C2×C62⋊C6 kernel C2×C62⋊C6 C62⋊C6 C2×C32⋊A4 C23×C3⋊S3 C22×C3⋊S3 C2×C62 C6×A4 C3×A4 C22×C6 C2×C6 C2×C3⋊S3 C3⋊S3 C3×C6 C23 C6 C22 C3 C2 C1 # reps 1 2 1 2 4 2 1 1 2 2 1 2 1 1 1 1 1 3 3

Matrix representation of C2×C62⋊C6 in GL6(ℤ)

 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1
,
 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -1 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 1
,
 0 1 0 0 0 0 -1 -1 0 0 0 0 0 0 0 -1 0 0 0 0 1 1 0 0 0 0 0 0 0 -1 0 0 0 0 1 1
,
 0 0 1 0 0 0 0 0 -1 -1 0 0 0 0 0 0 1 0 0 0 0 0 -1 -1 1 0 0 0 0 0 -1 -1 0 0 0 0

G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,1],[0,-1,0,0,0,0,1,-1,0,0,0,0,0,0,0,1,0,0,0,0,-1,1,0,0,0,0,0,0,0,1,0,0,0,0,-1,1],[0,0,0,0,1,-1,0,0,0,0,0,-1,1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,1,-1,0,0,0,0,0,-1,0,0] >;

C2×C62⋊C6 in GAP, Magma, Sage, TeX

C_2\times C_6^2\rtimes C_6
% in TeX

G:=Group("C2xC6^2:C6");
// GroupNames label

G:=SmallGroup(432,542);
// by ID

G=gap.SmallGroup(432,542);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,2,-3,-3,269,123,4037,2035,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^6=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=b^3*c^2>;
// generators/relations

׿
×
𝔽