extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C2×A4) = C6.(S3×A4) | φ: C2×A4/C22 → C6 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).1(C2xA4) | 432,269 |
(C3×C6).2(C2×A4) = Q8⋊He3⋊C2 | φ: C2×A4/C22 → C6 ⊆ Aut C3×C6 | 72 | 12- | (C3xC6).2(C2xA4) | 432,270 |
(C3×C6).3(C2×A4) = C62⋊4C12 | φ: C2×A4/C22 → C6 ⊆ Aut C3×C6 | 36 | 6- | (C3xC6).3(C2xA4) | 432,272 |
(C3×C6).4(C2×A4) = C4×C32.A4 | φ: C2×A4/C23 → C3 ⊆ Aut C3×C6 | 36 | 3 | (C3xC6).4(C2xA4) | 432,332 |
(C3×C6).5(C2×A4) = C4×C32⋊A4 | φ: C2×A4/C23 → C3 ⊆ Aut C3×C6 | 36 | 3 | (C3xC6).5(C2xA4) | 432,333 |
(C3×C6).6(C2×A4) = C2×Q8⋊3- 1+2 | φ: C2×A4/C23 → C3 ⊆ Aut C3×C6 | 144 | | (C3xC6).6(C2xA4) | 432,335 |
(C3×C6).7(C2×A4) = C2×Q8⋊He3 | φ: C2×A4/C23 → C3 ⊆ Aut C3×C6 | 144 | | (C3xC6).7(C2xA4) | 432,336 |
(C3×C6).8(C2×A4) = Q8⋊C9⋊4C6 | φ: C2×A4/C23 → C3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).8(C2xA4) | 432,338 |
(C3×C6).9(C2×A4) = C4○D4⋊He3 | φ: C2×A4/C23 → C3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).9(C2xA4) | 432,339 |
(C3×C6).10(C2×A4) = C22×C32.A4 | φ: C2×A4/C23 → C3 ⊆ Aut C3×C6 | 36 | | (C3xC6).10(C2xA4) | 432,549 |
(C3×C6).11(C2×A4) = Q8⋊C9⋊3S3 | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).11(C2xA4) | 432,267 |
(C3×C6).12(C2×A4) = S3×Q8⋊C9 | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).12(C2xA4) | 432,268 |
(C3×C6).13(C2×A4) = Dic3×C3.A4 | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).13(C2xA4) | 432,271 |
(C3×C6).14(C2×A4) = C2×S3×C3.A4 | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).14(C2xA4) | 432,541 |
(C3×C6).15(C2×A4) = C3×Dic3.A4 | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).15(C2xA4) | 432,622 |
(C3×C6).16(C2×A4) = C3×S3×SL2(𝔽3) | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).16(C2xA4) | 432,623 |
(C3×C6).17(C2×A4) = C3×Dic3×A4 | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).17(C2xA4) | 432,624 |
(C3×C6).18(C2×A4) = C3⋊Dic3.2A4 | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).18(C2xA4) | 432,625 |
(C3×C6).19(C2×A4) = C3⋊S3×SL2(𝔽3) | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).19(C2xA4) | 432,626 |
(C3×C6).20(C2×A4) = A4×C3⋊Dic3 | φ: C2×A4/A4 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).20(C2xA4) | 432,627 |
(C3×C6).21(C2×A4) = C12×C3.A4 | central extension (φ=1) | 108 | | (C3xC6).21(C2xA4) | 432,331 |
(C3×C6).22(C2×A4) = C6×Q8⋊C9 | central extension (φ=1) | 432 | | (C3xC6).22(C2xA4) | 432,334 |
(C3×C6).23(C2×A4) = C3×Q8.C18 | central extension (φ=1) | 216 | | (C3xC6).23(C2xA4) | 432,337 |
(C3×C6).24(C2×A4) = C2×C6×C3.A4 | central extension (φ=1) | 108 | | (C3xC6).24(C2xA4) | 432,548 |
(C3×C6).25(C2×A4) = A4×C3×C12 | central extension (φ=1) | 108 | | (C3xC6).25(C2xA4) | 432,697 |
(C3×C6).26(C2×A4) = C3×C6×SL2(𝔽3) | central extension (φ=1) | 144 | | (C3xC6).26(C2xA4) | 432,698 |
(C3×C6).27(C2×A4) = C32×C4.A4 | central extension (φ=1) | 144 | | (C3xC6).27(C2xA4) | 432,699 |