extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1(S3×C6) = C18×S4 | φ: S3×C6/C6 → S3 ⊆ Aut C2×C6 | 54 | 3 | (C2xC6).1(S3xC6) | 432,532 |
(C2×C6).2(S3×C6) = C2×C32.S4 | φ: S3×C6/C6 → S3 ⊆ Aut C2×C6 | 18 | 6+ | (C2xC6).2(S3xC6) | 432,533 |
(C2×C6).3(S3×C6) = C6×C3.S4 | φ: S3×C6/C6 → S3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).3(S3xC6) | 432,534 |
(C2×C6).4(S3×C6) = C2×C62⋊S3 | φ: S3×C6/C6 → S3 ⊆ Aut C2×C6 | 18 | 6+ | (C2xC6).4(S3xC6) | 432,535 |
(C2×C6).5(S3×C6) = C2×D9⋊A4 | φ: S3×C6/C6 → C6 ⊆ Aut C2×C6 | 54 | 6+ | (C2xC6).5(S3xC6) | 432,539 |
(C2×C6).6(S3×C6) = C2×A4×D9 | φ: S3×C6/C6 → C6 ⊆ Aut C2×C6 | 54 | 6+ | (C2xC6).6(S3xC6) | 432,540 |
(C2×C6).7(S3×C6) = C2×C62⋊C6 | φ: S3×C6/C6 → C6 ⊆ Aut C2×C6 | 18 | 6+ | (C2xC6).7(S3xC6) | 432,542 |
(C2×C6).8(S3×C6) = C3×D4×D9 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).8(S3xC6) | 432,356 |
(C2×C6).9(S3×C6) = C3×D4⋊2D9 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).9(S3xC6) | 432,357 |
(C2×C6).10(S3×C6) = D4×C32⋊C6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C6 | 36 | 12+ | (C2xC6).10(S3xC6) | 432,360 |
(C2×C6).11(S3×C6) = C62.13D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C6 | 72 | 12- | (C2xC6).11(S3xC6) | 432,361 |
(C2×C6).12(S3×C6) = D4×C9⋊C6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C6 | 36 | 12+ | (C2xC6).12(S3xC6) | 432,362 |
(C2×C6).13(S3×C6) = Dic18⋊2C6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C6 | 72 | 12- | (C2xC6).13(S3xC6) | 432,363 |
(C2×C6).14(S3×C6) = C3×D6.3D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).14(S3xC6) | 432,652 |
(C2×C6).15(S3×C6) = C3×D6.4D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C6 | 24 | 4 | (C2xC6).15(S3xC6) | 432,653 |
(C2×C6).16(S3×C6) = C3×C12.D6 | φ: S3×C6/C32 → C22 ⊆ Aut C2×C6 | 72 | | (C2xC6).16(S3xC6) | 432,715 |
(C2×C6).17(S3×C6) = C2×S3×C3.A4 | φ: S3×C6/D6 → C3 ⊆ Aut C2×C6 | 36 | 6 | (C2xC6).17(S3xC6) | 432,541 |
(C2×C6).18(S3×C6) = S3×D4×C9 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).18(S3xC6) | 432,358 |
(C2×C6).19(S3×C6) = C9×D4⋊2S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 72 | 4 | (C2xC6).19(S3xC6) | 432,359 |
(C2×C6).20(S3×C6) = C32×D4⋊2S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).20(S3xC6) | 432,705 |
(C2×C6).21(S3×C6) = C3×Dic32 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).21(S3xC6) | 432,425 |
(C2×C6).22(S3×C6) = C3×D6⋊Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).22(S3xC6) | 432,426 |
(C2×C6).23(S3×C6) = C3×C6.D12 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).23(S3xC6) | 432,427 |
(C2×C6).24(S3×C6) = C3×Dic3⋊Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).24(S3xC6) | 432,428 |
(C2×C6).25(S3×C6) = C3×C62.C22 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).25(S3xC6) | 432,429 |
(C2×C6).26(S3×C6) = S3×C6×Dic3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).26(S3xC6) | 432,651 |
(C2×C6).27(S3×C6) = C6×C6.D6 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).27(S3xC6) | 432,654 |
(C2×C6).28(S3×C6) = C6×D6⋊S3 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).28(S3xC6) | 432,655 |
(C2×C6).29(S3×C6) = C6×C3⋊D12 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).29(S3xC6) | 432,656 |
(C2×C6).30(S3×C6) = C6×C32⋊2Q8 | φ: S3×C6/C3×S3 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).30(S3xC6) | 432,657 |
(C2×C6).31(S3×C6) = C9×C4○D12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).31(S3xC6) | 432,347 |
(C2×C6).32(S3×C6) = C18×C3⋊D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).32(S3xC6) | 432,375 |
(C2×C6).33(S3×C6) = C32×C4○D12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).33(S3xC6) | 432,703 |
(C2×C6).34(S3×C6) = C12×Dic9 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).34(S3xC6) | 432,128 |
(C2×C6).35(S3×C6) = C3×Dic9⋊C4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).35(S3xC6) | 432,129 |
(C2×C6).36(S3×C6) = C3×C4⋊Dic9 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).36(S3xC6) | 432,130 |
(C2×C6).37(S3×C6) = C3×D18⋊C4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).37(S3xC6) | 432,134 |
(C2×C6).38(S3×C6) = C4×C32⋊C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).38(S3xC6) | 432,138 |
(C2×C6).39(S3×C6) = C62.19D6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).39(S3xC6) | 432,139 |
(C2×C6).40(S3×C6) = C62.20D6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).40(S3xC6) | 432,140 |
(C2×C6).41(S3×C6) = C62.21D6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).41(S3xC6) | 432,141 |
(C2×C6).42(S3×C6) = C4×C9⋊C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).42(S3xC6) | 432,144 |
(C2×C6).43(S3×C6) = Dic9⋊C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).43(S3xC6) | 432,145 |
(C2×C6).44(S3×C6) = C36⋊C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).44(S3xC6) | 432,146 |
(C2×C6).45(S3×C6) = D18⋊C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).45(S3xC6) | 432,147 |
(C2×C6).46(S3×C6) = C3×C18.D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).46(S3xC6) | 432,164 |
(C2×C6).47(S3×C6) = C62⋊3C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).47(S3xC6) | 432,166 |
(C2×C6).48(S3×C6) = C62.27D6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).48(S3xC6) | 432,167 |
(C2×C6).49(S3×C6) = C6×Dic18 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).49(S3xC6) | 432,340 |
(C2×C6).50(S3×C6) = D9×C2×C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).50(S3xC6) | 432,342 |
(C2×C6).51(S3×C6) = C6×D36 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).51(S3xC6) | 432,343 |
(C2×C6).52(S3×C6) = C3×D36⋊5C2 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).52(S3xC6) | 432,344 |
(C2×C6).53(S3×C6) = C2×He3⋊3Q8 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).53(S3xC6) | 432,348 |
(C2×C6).54(S3×C6) = C2×C4×C32⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).54(S3xC6) | 432,349 |
(C2×C6).55(S3×C6) = C2×He3⋊4D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).55(S3xC6) | 432,350 |
(C2×C6).56(S3×C6) = C62.36D6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 6 | (C2xC6).56(S3xC6) | 432,351 |
(C2×C6).57(S3×C6) = C2×C36.C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).57(S3xC6) | 432,352 |
(C2×C6).58(S3×C6) = C2×C4×C9⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).58(S3xC6) | 432,353 |
(C2×C6).59(S3×C6) = C2×D36⋊C3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).59(S3xC6) | 432,354 |
(C2×C6).60(S3×C6) = D36⋊6C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | 6 | (C2xC6).60(S3xC6) | 432,355 |
(C2×C6).61(S3×C6) = C2×C6×Dic9 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).61(S3xC6) | 432,372 |
(C2×C6).62(S3×C6) = C6×C9⋊D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).62(S3xC6) | 432,374 |
(C2×C6).63(S3×C6) = C22×C32⋊C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).63(S3xC6) | 432,376 |
(C2×C6).64(S3×C6) = C2×He3⋊6D4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).64(S3xC6) | 432,377 |
(C2×C6).65(S3×C6) = C22×C9⋊C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).65(S3xC6) | 432,378 |
(C2×C6).66(S3×C6) = C2×Dic9⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).66(S3xC6) | 432,379 |
(C2×C6).67(S3×C6) = C12×C3⋊Dic3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).67(S3xC6) | 432,487 |
(C2×C6).68(S3×C6) = C3×C6.Dic6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).68(S3xC6) | 432,488 |
(C2×C6).69(S3×C6) = C3×C12⋊Dic3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).69(S3xC6) | 432,489 |
(C2×C6).70(S3×C6) = C3×C6.11D12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).70(S3xC6) | 432,490 |
(C2×C6).71(S3×C6) = C3×C62⋊5C4 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).71(S3xC6) | 432,495 |
(C2×C6).72(S3×C6) = D9×C22×C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).72(S3xC6) | 432,556 |
(C2×C6).73(S3×C6) = C23×C32⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).73(S3xC6) | 432,558 |
(C2×C6).74(S3×C6) = C23×C9⋊C6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).74(S3xC6) | 432,559 |
(C2×C6).75(S3×C6) = C6×C32⋊4Q8 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).75(S3xC6) | 432,710 |
(C2×C6).76(S3×C6) = C3⋊S3×C2×C12 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).76(S3xC6) | 432,711 |
(C2×C6).77(S3×C6) = C6×C12⋊S3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).77(S3xC6) | 432,712 |
(C2×C6).78(S3×C6) = C3×C12.59D6 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 72 | | (C2xC6).78(S3xC6) | 432,713 |
(C2×C6).79(S3×C6) = C2×C6×C3⋊Dic3 | φ: S3×C6/C3×C6 → C2 ⊆ Aut C2×C6 | 144 | | (C2xC6).79(S3xC6) | 432,718 |
(C2×C6).80(S3×C6) = Dic3×C36 | central extension (φ=1) | 144 | | (C2xC6).80(S3xC6) | 432,131 |
(C2×C6).81(S3×C6) = C9×Dic3⋊C4 | central extension (φ=1) | 144 | | (C2xC6).81(S3xC6) | 432,132 |
(C2×C6).82(S3×C6) = C9×C4⋊Dic3 | central extension (φ=1) | 144 | | (C2xC6).82(S3xC6) | 432,133 |
(C2×C6).83(S3×C6) = C9×D6⋊C4 | central extension (φ=1) | 144 | | (C2xC6).83(S3xC6) | 432,135 |
(C2×C6).84(S3×C6) = C9×C6.D4 | central extension (φ=1) | 72 | | (C2xC6).84(S3xC6) | 432,165 |
(C2×C6).85(S3×C6) = C18×Dic6 | central extension (φ=1) | 144 | | (C2xC6).85(S3xC6) | 432,341 |
(C2×C6).86(S3×C6) = S3×C2×C36 | central extension (φ=1) | 144 | | (C2xC6).86(S3xC6) | 432,345 |
(C2×C6).87(S3×C6) = C18×D12 | central extension (φ=1) | 144 | | (C2xC6).87(S3xC6) | 432,346 |
(C2×C6).88(S3×C6) = Dic3×C2×C18 | central extension (φ=1) | 144 | | (C2xC6).88(S3xC6) | 432,373 |
(C2×C6).89(S3×C6) = Dic3×C3×C12 | central extension (φ=1) | 144 | | (C2xC6).89(S3xC6) | 432,471 |
(C2×C6).90(S3×C6) = C32×Dic3⋊C4 | central extension (φ=1) | 144 | | (C2xC6).90(S3xC6) | 432,472 |
(C2×C6).91(S3×C6) = C32×C4⋊Dic3 | central extension (φ=1) | 144 | | (C2xC6).91(S3xC6) | 432,473 |
(C2×C6).92(S3×C6) = C32×D6⋊C4 | central extension (φ=1) | 144 | | (C2xC6).92(S3xC6) | 432,474 |
(C2×C6).93(S3×C6) = C32×C6.D4 | central extension (φ=1) | 72 | | (C2xC6).93(S3xC6) | 432,479 |
(C2×C6).94(S3×C6) = S3×C22×C18 | central extension (φ=1) | 144 | | (C2xC6).94(S3xC6) | 432,557 |
(C2×C6).95(S3×C6) = C3×C6×Dic6 | central extension (φ=1) | 144 | | (C2xC6).95(S3xC6) | 432,700 |
(C2×C6).96(S3×C6) = S3×C6×C12 | central extension (φ=1) | 144 | | (C2xC6).96(S3xC6) | 432,701 |
(C2×C6).97(S3×C6) = C3×C6×D12 | central extension (φ=1) | 144 | | (C2xC6).97(S3xC6) | 432,702 |
(C2×C6).98(S3×C6) = Dic3×C62 | central extension (φ=1) | 144 | | (C2xC6).98(S3xC6) | 432,708 |