Extensions 1→N→G→Q→1 with N=C3⋊Dic3 and Q=D6

Direct product G=N×Q with N=C3⋊Dic3 and Q=D6
dρLabelID
C2×S3×C3⋊Dic3144C2xS3xC3:Dic3432,674

Semidirect products G=N:Q with N=C3⋊Dic3 and Q=D6
extensionφ:Q→Out NdρLabelID
C3⋊Dic31D6 = C62⋊D6φ: D6/C1D6 ⊆ Out C3⋊Dic33612+C3:Dic3:1D6432,323
C3⋊Dic32D6 = C622D6φ: D6/C1D6 ⊆ Out C3⋊Dic3366C3:Dic3:2D6432,324
C3⋊Dic33D6 = C4×C32⋊D6φ: D6/C2S3 ⊆ Out C3⋊Dic3366C3:Dic3:3D6432,300
C3⋊Dic34D6 = C3⋊S3⋊D12φ: D6/C2S3 ⊆ Out C3⋊Dic33612+C3:Dic3:4D6432,301
C3⋊Dic35D6 = C2×C6.S32φ: D6/C2S3 ⊆ Out C3⋊Dic372C3:Dic3:5D6432,317
C3⋊Dic36D6 = C2×He3⋊(C2×C4)φ: D6/C2S3 ⊆ Out C3⋊Dic372C3:Dic3:6D6432,321
C3⋊Dic37D6 = C2×He33D4φ: D6/C2S3 ⊆ Out C3⋊Dic372C3:Dic3:7D6432,322
C3⋊Dic38D6 = S3×C3⋊D12φ: D6/C3C22 ⊆ Out C3⋊Dic3248+C3:Dic3:8D6432,598
C3⋊Dic39D6 = D64S32φ: D6/C3C22 ⊆ Out C3⋊Dic3248+C3:Dic3:9D6432,599
C3⋊Dic310D6 = C6224D6φ: D6/C3C22 ⊆ Out C3⋊Dic3244C3:Dic3:10D6432,696
C3⋊Dic311D6 = S32×Dic3φ: D6/S3C2 ⊆ Out C3⋊Dic3488-C3:Dic3:11D6432,594
C3⋊Dic312D6 = S3×C6.D6φ: D6/S3C2 ⊆ Out C3⋊Dic3248+C3:Dic3:12D6432,595
C3⋊Dic313D6 = S3×D6⋊S3φ: D6/S3C2 ⊆ Out C3⋊Dic3488-C3:Dic3:13D6432,597
C3⋊Dic314D6 = (S3×C6)⋊D6φ: D6/S3C2 ⊆ Out C3⋊Dic3248+C3:Dic3:14D6432,601
C3⋊Dic315D6 = S3×C327D4φ: D6/S3C2 ⊆ Out C3⋊Dic372C3:Dic3:15D6432,684
C3⋊Dic316D6 = C6223D6φ: D6/S3C2 ⊆ Out C3⋊Dic336C3:Dic3:16D6432,686
C3⋊Dic317D6 = C3⋊S3×D12φ: D6/C6C2 ⊆ Out C3⋊Dic372C3:Dic3:17D6432,672
C3⋊Dic318D6 = C2×C337D4φ: D6/C6C2 ⊆ Out C3⋊Dic372C3:Dic3:18D6432,681
C3⋊Dic319D6 = C4×C324D6φ: D6/C6C2 ⊆ Out C3⋊Dic3484C3:Dic3:19D6432,690
C3⋊Dic320D6 = C123S32φ: D6/C6C2 ⊆ Out C3⋊Dic3484C3:Dic3:20D6432,691
C3⋊Dic321D6 = C2×C339(C2×C4)φ: D6/C6C2 ⊆ Out C3⋊Dic348C3:Dic3:21D6432,692
C3⋊Dic322D6 = C2×C339D4φ: D6/C6C2 ⊆ Out C3⋊Dic348C3:Dic3:22D6432,694
C3⋊Dic323D6 = C4×S3×C3⋊S3φ: trivial image72C3:Dic3:23D6432,670
C3⋊Dic324D6 = C2×C338(C2×C4)φ: trivial image72C3:Dic3:24D6432,679

Non-split extensions G=N.Q with N=C3⋊Dic3 and Q=D6
extensionφ:Q→Out NdρLabelID
C3⋊Dic3.1D6 = C12.84S32φ: D6/C1D6 ⊆ Out C3⋊Dic3726C3:Dic3.1D6432,296
C3⋊Dic3.2D6 = C12.85S32φ: D6/C1D6 ⊆ Out C3⋊Dic3726-C3:Dic3.2D6432,298
C3⋊Dic3.3D6 = C12.S32φ: D6/C1D6 ⊆ Out C3⋊Dic37212-C3:Dic3.3D6432,299
C3⋊Dic3.4D6 = C62.9D6φ: D6/C1D6 ⊆ Out C3⋊Dic3726C3:Dic3.4D6432,319
C3⋊Dic3.5D6 = C3⋊S3⋊Dic6φ: D6/C2S3 ⊆ Out C3⋊Dic37212-C3:Dic3.5D6432,294
C3⋊Dic3.6D6 = C12⋊S3⋊S3φ: D6/C2S3 ⊆ Out C3⋊Dic37212+C3:Dic3.6D6432,295
C3⋊Dic3.7D6 = C12.91S32φ: D6/C2S3 ⊆ Out C3⋊Dic3726C3:Dic3.7D6432,297
C3⋊Dic3.8D6 = C2×He32Q8φ: D6/C2S3 ⊆ Out C3⋊Dic3144C3:Dic3.8D6432,316
C3⋊Dic3.9D6 = C62.8D6φ: D6/C2S3 ⊆ Out C3⋊Dic37212-C3:Dic3.9D6432,318
C3⋊Dic3.10D6 = C33⋊D8φ: D6/C3C22 ⊆ Out C3⋊Dic3244C3:Dic3.10D6432,582
C3⋊Dic3.11D6 = C336SD16φ: D6/C3C22 ⊆ Out C3⋊Dic3244C3:Dic3.11D6432,583
C3⋊Dic3.12D6 = C337SD16φ: D6/C3C22 ⊆ Out C3⋊Dic3244C3:Dic3.12D6432,584
C3⋊Dic3.13D6 = C33⋊Q16φ: D6/C3C22 ⊆ Out C3⋊Dic3484C3:Dic3.13D6432,585
C3⋊Dic3.14D6 = C322D24φ: D6/C3C22 ⊆ Out C3⋊Dic3248+C3:Dic3.14D6432,588
C3⋊Dic3.15D6 = C338SD16φ: D6/C3C22 ⊆ Out C3⋊Dic3248+C3:Dic3.15D6432,589
C3⋊Dic3.16D6 = C333Q16φ: D6/C3C22 ⊆ Out C3⋊Dic3488-C3:Dic3.16D6432,590
C3⋊Dic3.17D6 = C335(C2×Q8)φ: D6/C3C22 ⊆ Out C3⋊Dic3488-C3:Dic3.17D6432,604
C3⋊Dic3.18D6 = D6.S32φ: D6/C3C22 ⊆ Out C3⋊Dic3488-C3:Dic3.18D6432,607
C3⋊Dic3.19D6 = D6.4S32φ: D6/C3C22 ⊆ Out C3⋊Dic3488-C3:Dic3.19D6432,608
C3⋊Dic3.20D6 = C3⋊S34Dic6φ: D6/C3C22 ⊆ Out C3⋊Dic3484C3:Dic3.20D6432,687
C3⋊Dic3.21D6 = C12⋊S312S3φ: D6/C3C22 ⊆ Out C3⋊Dic3484C3:Dic3.21D6432,688
C3⋊Dic3.22D6 = C62.96D6φ: D6/C3C22 ⊆ Out C3⋊Dic3244C3:Dic3.22D6432,693
C3⋊Dic3.23D6 = S3×C322C8φ: D6/S3C2 ⊆ Out C3⋊Dic3488-C3:Dic3.23D6432,570
C3⋊Dic3.24D6 = C335(C2×C8)φ: D6/S3C2 ⊆ Out C3⋊Dic3248+C3:Dic3.24D6432,571
C3⋊Dic3.25D6 = C33⋊M4(2)φ: D6/S3C2 ⊆ Out C3⋊Dic3488-C3:Dic3.25D6432,572
C3⋊Dic3.26D6 = C332M4(2)φ: D6/S3C2 ⊆ Out C3⋊Dic3248+C3:Dic3.26D6432,573
C3⋊Dic3.27D6 = S3×C322Q8φ: D6/S3C2 ⊆ Out C3⋊Dic3488-C3:Dic3.27D6432,603
C3⋊Dic3.28D6 = C336(C2×Q8)φ: D6/S3C2 ⊆ Out C3⋊Dic3248+C3:Dic3.28D6432,605
C3⋊Dic3.29D6 = (S3×C6).D6φ: D6/S3C2 ⊆ Out C3⋊Dic3248+C3:Dic3.29D6432,606
C3⋊Dic3.30D6 = D6.3S32φ: D6/S3C2 ⊆ Out C3⋊Dic3248+C3:Dic3.30D6432,609
C3⋊Dic3.31D6 = D6⋊S3⋊S3φ: D6/S3C2 ⊆ Out C3⋊Dic3488-C3:Dic3.31D6432,610
C3⋊Dic3.32D6 = D6.6S32φ: D6/S3C2 ⊆ Out C3⋊Dic3488-C3:Dic3.32D6432,611
C3⋊Dic3.33D6 = Dic3.S32φ: D6/S3C2 ⊆ Out C3⋊Dic3248+C3:Dic3.33D6432,612
C3⋊Dic3.34D6 = S3×C324Q8φ: D6/S3C2 ⊆ Out C3⋊Dic3144C3:Dic3.34D6432,660
C3⋊Dic3.35D6 = D12⋊(C3⋊S3)φ: D6/S3C2 ⊆ Out C3⋊Dic372C3:Dic3.35D6432,662
C3⋊Dic3.36D6 = C329(S3×Q8)φ: D6/S3C2 ⊆ Out C3⋊Dic372C3:Dic3.36D6432,666
C3⋊Dic3.37D6 = C12.58S32φ: D6/S3C2 ⊆ Out C3⋊Dic372C3:Dic3.37D6432,669
C3⋊Dic3.38D6 = C62.91D6φ: D6/S3C2 ⊆ Out C3⋊Dic372C3:Dic3.38D6432,676
C3⋊Dic3.39D6 = C62.93D6φ: D6/S3C2 ⊆ Out C3⋊Dic372C3:Dic3.39D6432,678
C3⋊Dic3.40D6 = C337(C2×C8)φ: D6/C6C2 ⊆ Out C3⋊Dic3484C3:Dic3.40D6432,635
C3⋊Dic3.41D6 = C334M4(2)φ: D6/C6C2 ⊆ Out C3⋊Dic3484C3:Dic3.41D6432,636
C3⋊Dic3.42D6 = C2×C334C8φ: D6/C6C2 ⊆ Out C3⋊Dic348C3:Dic3.42D6432,639
C3⋊Dic3.43D6 = C3312M4(2)φ: D6/C6C2 ⊆ Out C3⋊Dic3244C3:Dic3.43D6432,640
C3⋊Dic3.44D6 = C3⋊S3×Dic6φ: D6/C6C2 ⊆ Out C3⋊Dic3144C3:Dic3.44D6432,663
C3⋊Dic3.45D6 = C12.73S32φ: D6/C6C2 ⊆ Out C3⋊Dic372C3:Dic3.45D6432,667
C3⋊Dic3.46D6 = C2×C334Q8φ: D6/C6C2 ⊆ Out C3⋊Dic3144C3:Dic3.46D6432,683
C3⋊Dic3.47D6 = C12.95S32φ: D6/C6C2 ⊆ Out C3⋊Dic3484C3:Dic3.47D6432,689
C3⋊Dic3.48D6 = C2×C335Q8φ: D6/C6C2 ⊆ Out C3⋊Dic348C3:Dic3.48D6432,695
C3⋊Dic3.49D6 = (C3×D12)⋊S3φ: trivial image144C3:Dic3.49D6432,661
C3⋊Dic3.50D6 = C12.40S32φ: trivial image72C3:Dic3.50D6432,665
C3⋊Dic3.51D6 = C62.90D6φ: trivial image72C3:Dic3.51D6432,675

׿
×
𝔽