Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=D9

Direct product G=N×Q with N=C3×Q8 and Q=D9
dρLabelID
C3×Q8×D91444C3xQ8xD9432,364

Semidirect products G=N:Q with N=C3×Q8 and Q=D9
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1D9 = C32.3GL2(𝔽3)φ: D9/C3S3 ⊆ Out C3×Q8216(C3xQ8):1D9432,256
(C3×Q8)⋊2D9 = C3×Q8⋊D9φ: D9/C3S3 ⊆ Out C3×Q81444(C3xQ8):2D9432,246
(C3×Q8)⋊3D9 = C36.20D6φ: D9/C9C2 ⊆ Out C3×Q8216(C3xQ8):3D9432,195
(C3×Q8)⋊4D9 = Q8×C9⋊S3φ: D9/C9C2 ⊆ Out C3×Q8216(C3xQ8):4D9432,392
(C3×Q8)⋊5D9 = C36.29D6φ: D9/C9C2 ⊆ Out C3×Q8216(C3xQ8):5D9432,393
(C3×Q8)⋊6D9 = C3×Q82D9φ: D9/C9C2 ⊆ Out C3×Q81444(C3xQ8):6D9432,157
(C3×Q8)⋊7D9 = C3×Q83D9φ: trivial image1444(C3xQ8):7D9432,365

Non-split extensions G=N.Q with N=C3×Q8 and Q=D9
extensionφ:Q→Out NdρLabelID
(C3×Q8).1D9 = Q8.D27φ: D9/C3S3 ⊆ Out C3×Q84324-(C3xQ8).1D9432,37
(C3×Q8).2D9 = Q8⋊D27φ: D9/C3S3 ⊆ Out C3×Q82164+(C3xQ8).2D9432,38
(C3×Q8).3D9 = C32.3CSU2(𝔽3)φ: D9/C3S3 ⊆ Out C3×Q8432(C3xQ8).3D9432,255
(C3×Q8).4D9 = C3×Q8.D9φ: D9/C3S3 ⊆ Out C3×Q81444(C3xQ8).4D9432,244
(C3×Q8).5D9 = C27⋊Q16φ: D9/C9C2 ⊆ Out C3×Q84324-(C3xQ8).5D9432,17
(C3×Q8).6D9 = Q82D27φ: D9/C9C2 ⊆ Out C3×Q82164+(C3xQ8).6D9432,18
(C3×Q8).7D9 = Q8×D27φ: D9/C9C2 ⊆ Out C3×Q82164-(C3xQ8).7D9432,49
(C3×Q8).8D9 = Q83D27φ: D9/C9C2 ⊆ Out C3×Q82164+(C3xQ8).8D9432,50
(C3×Q8).9D9 = C36.19D6φ: D9/C9C2 ⊆ Out C3×Q8432(C3xQ8).9D9432,194
(C3×Q8).10D9 = C3×C9⋊Q16φ: D9/C9C2 ⊆ Out C3×Q81444(C3xQ8).10D9432,156

׿
×
𝔽