extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C12).1(C3⋊S3) = C6.Dic18 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).1(C3:S3) | 432,181 |
(C2×C12).2(C3⋊S3) = C6.11D36 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 216 | | (C2xC12).2(C3:S3) | 432,183 |
(C2×C12).3(C3⋊S3) = C62.29D6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 144 | | (C2xC12).3(C3:S3) | 432,187 |
(C2×C12).4(C3⋊S3) = C62.31D6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 72 | | (C2xC12).4(C3:S3) | 432,189 |
(C2×C12).5(C3⋊S3) = C3×C6.Dic6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 144 | | (C2xC12).5(C3:S3) | 432,488 |
(C2×C12).6(C3⋊S3) = C62.146D6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).6(C3:S3) | 432,504 |
(C2×C12).7(C3⋊S3) = C36⋊Dic3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).7(C3:S3) | 432,182 |
(C2×C12).8(C3⋊S3) = C2×C12.D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).8(C3:S3) | 432,380 |
(C2×C12).9(C3⋊S3) = C2×C36⋊S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 216 | | (C2xC12).9(C3:S3) | 432,382 |
(C2×C12).10(C3⋊S3) = C62.147D6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).10(C3:S3) | 432,505 |
(C2×C12).11(C3⋊S3) = C2×C33⋊8Q8 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).11(C3:S3) | 432,720 |
(C2×C12).12(C3⋊S3) = C36.69D6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 216 | | (C2xC12).12(C3:S3) | 432,179 |
(C2×C12).13(C3⋊S3) = C36.70D6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 216 | | (C2xC12).13(C3:S3) | 432,383 |
(C2×C12).14(C3⋊S3) = C33⋊18M4(2) | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 216 | | (C2xC12).14(C3:S3) | 432,502 |
(C2×C12).15(C3⋊S3) = C2×C36.S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).15(C3:S3) | 432,178 |
(C2×C12).16(C3⋊S3) = C4×C9⋊Dic3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).16(C3:S3) | 432,180 |
(C2×C12).17(C3⋊S3) = C2×C4×C9⋊S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 216 | | (C2xC12).17(C3:S3) | 432,381 |
(C2×C12).18(C3⋊S3) = C2×C33⋊7C8 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).18(C3:S3) | 432,501 |
(C2×C12).19(C3⋊S3) = C4×C33⋊5C4 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 432 | | (C2xC12).19(C3:S3) | 432,503 |
(C2×C12).20(C3⋊S3) = He3⋊8M4(2) | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 72 | 6 | (C2xC12).20(C3:S3) | 432,185 |
(C2×C12).21(C3⋊S3) = C62.30D6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 144 | | (C2xC12).21(C3:S3) | 432,188 |
(C2×C12).22(C3⋊S3) = C2×He3⋊4Q8 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 144 | | (C2xC12).22(C3:S3) | 432,384 |
(C2×C12).23(C3⋊S3) = C2×He3⋊5D4 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 72 | | (C2xC12).23(C3:S3) | 432,386 |
(C2×C12).24(C3⋊S3) = C62.47D6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 72 | 6 | (C2xC12).24(C3:S3) | 432,387 |
(C2×C12).25(C3⋊S3) = C3×C12.58D6 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 72 | | (C2xC12).25(C3:S3) | 432,486 |
(C2×C12).26(C3⋊S3) = C3×C12⋊Dic3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 144 | | (C2xC12).26(C3:S3) | 432,489 |
(C2×C12).27(C3⋊S3) = C6×C32⋊4Q8 | φ: C3⋊S3/C32 → C2 ⊆ Aut C2×C12 | 144 | | (C2xC12).27(C3:S3) | 432,710 |
(C2×C12).28(C3⋊S3) = C2×He3⋊4C8 | central extension (φ=1) | 144 | | (C2xC12).28(C3:S3) | 432,184 |
(C2×C12).29(C3⋊S3) = C4×He3⋊3C4 | central extension (φ=1) | 144 | | (C2xC12).29(C3:S3) | 432,186 |
(C2×C12).30(C3⋊S3) = C2×C4×He3⋊C2 | central extension (φ=1) | 72 | | (C2xC12).30(C3:S3) | 432,385 |
(C2×C12).31(C3⋊S3) = C6×C32⋊4C8 | central extension (φ=1) | 144 | | (C2xC12).31(C3:S3) | 432,485 |
(C2×C12).32(C3⋊S3) = C12×C3⋊Dic3 | central extension (φ=1) | 144 | | (C2xC12).32(C3:S3) | 432,487 |