Extensions 1→N→G→Q→1 with N=C4×3- 1+2 and Q=C4

Direct product G=N×Q with N=C4×3- 1+2 and Q=C4
C42×3- 1+2144C4^2xES-(3,1)432,202

Semidirect products G=N:Q with N=C4×3- 1+2 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×3- 1+2)⋊1C4 = C36⋊C12φ: C4/C2C2 ⊆ Out C4×3- 1+2144(C4xES-(3,1)):1C4432,146
(C4×3- 1+2)⋊2C4 = C4×C9⋊C12φ: C4/C2C2 ⊆ Out C4×3- 1+2144(C4xES-(3,1)):2C4432,144
(C4×3- 1+2)⋊3C4 = C4⋊C4×3- 1+2φ: C4/C2C2 ⊆ Out C4×3- 1+2144(C4xES-(3,1)):3C4432,208

Non-split extensions G=N.Q with N=C4×3- 1+2 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×3- 1+2).1C4 = C36.C12φ: C4/C2C2 ⊆ Out C4×3- 1+2726(C4xES-(3,1)).1C4432,143
(C4×3- 1+2).2C4 = C9⋊C48φ: C4/C2C2 ⊆ Out C4×3- 1+21446(C4xES-(3,1)).2C4432,31
(C4×3- 1+2).3C4 = C2×C9⋊C24φ: C4/C2C2 ⊆ Out C4×3- 1+2144(C4xES-(3,1)).3C4432,142
(C4×3- 1+2).4C4 = M4(2)×3- 1+2φ: C4/C2C2 ⊆ Out C4×3- 1+2726(C4xES-(3,1)).4C4432,214
(C4×3- 1+2).5C4 = C16×3- 1+2φ: trivial image1443(C4xES-(3,1)).5C4432,36
(C4×3- 1+2).6C4 = C2×C8×3- 1+2φ: trivial image144(C4xES-(3,1)).6C4432,211