Copied to
clipboard

G = C9⋊C48order 432 = 24·33

The semidirect product of C9 and C48 acting via C48/C8=C6

metacyclic, supersoluble, monomial

Aliases: C9⋊C48, C18.C24, C72.2C6, C36.2C12, 3- 1+2⋊C16, C9⋊C16⋊C3, C2.(C9⋊C24), C8.2(C9⋊C6), (C3×C24).7S3, C32.(C3⋊C16), C4.2(C9⋊C12), C24.16(C3×S3), (C3×C12).6Dic3, C12.10(C3×Dic3), (C2×3- 1+2).C8, (C4×3- 1+2).2C4, (C8×3- 1+2).2C2, C6.3(C3×C3⋊C8), C3.3(C3×C3⋊C16), (C3×C6).3(C3⋊C8), SmallGroup(432,31)

Series: Derived Chief Lower central Upper central

C1C9 — C9⋊C48
C1C3C9C18C36C72C8×3- 1+2 — C9⋊C48
C9 — C9⋊C48
C1C8

Generators and relations for C9⋊C48
 G = < a,b | a9=b48=1, bab-1=a5 >

3C3
3C6
2C9
3C12
2C18
9C16
3C24
2C36
3C3⋊C16
9C48
2C72
3C3×C3⋊C16

Smallest permutation representation of C9⋊C48
On 144 points
Generators in S144
(1 56 121 36 88 137 31 72 105)(2 138 57 32 122 73 37 106 89)(3 74 139 38 58 107 17 90 123)(4 108 75 18 140 91 39 124 59)(5 92 109 40 76 125 19 60 141)(6 126 93 20 110 61 41 142 77)(7 62 127 42 94 143 21 78 111)(8 144 63 22 128 79 43 112 95)(9 80 97 44 64 113 23 96 129)(10 114 81 24 98 49 45 130 65)(11 50 115 46 82 131 25 66 99)(12 132 51 26 116 67 47 100 83)(13 68 133 48 52 101 27 84 117)(14 102 69 28 134 85 33 118 53)(15 86 103 34 70 119 29 54 135)(16 120 87 30 104 55 35 136 71)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (1,56,121,36,88,137,31,72,105)(2,138,57,32,122,73,37,106,89)(3,74,139,38,58,107,17,90,123)(4,108,75,18,140,91,39,124,59)(5,92,109,40,76,125,19,60,141)(6,126,93,20,110,61,41,142,77)(7,62,127,42,94,143,21,78,111)(8,144,63,22,128,79,43,112,95)(9,80,97,44,64,113,23,96,129)(10,114,81,24,98,49,45,130,65)(11,50,115,46,82,131,25,66,99)(12,132,51,26,116,67,47,100,83)(13,68,133,48,52,101,27,84,117)(14,102,69,28,134,85,33,118,53)(15,86,103,34,70,119,29,54,135)(16,120,87,30,104,55,35,136,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;

G:=Group( (1,56,121,36,88,137,31,72,105)(2,138,57,32,122,73,37,106,89)(3,74,139,38,58,107,17,90,123)(4,108,75,18,140,91,39,124,59)(5,92,109,40,76,125,19,60,141)(6,126,93,20,110,61,41,142,77)(7,62,127,42,94,143,21,78,111)(8,144,63,22,128,79,43,112,95)(9,80,97,44,64,113,23,96,129)(10,114,81,24,98,49,45,130,65)(11,50,115,46,82,131,25,66,99)(12,132,51,26,116,67,47,100,83)(13,68,133,48,52,101,27,84,117)(14,102,69,28,134,85,33,118,53)(15,86,103,34,70,119,29,54,135)(16,120,87,30,104,55,35,136,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(1,56,121,36,88,137,31,72,105),(2,138,57,32,122,73,37,106,89),(3,74,139,38,58,107,17,90,123),(4,108,75,18,140,91,39,124,59),(5,92,109,40,76,125,19,60,141),(6,126,93,20,110,61,41,142,77),(7,62,127,42,94,143,21,78,111),(8,144,63,22,128,79,43,112,95),(9,80,97,44,64,113,23,96,129),(10,114,81,24,98,49,45,130,65),(11,50,115,46,82,131,25,66,99),(12,132,51,26,116,67,47,100,83),(13,68,133,48,52,101,27,84,117),(14,102,69,28,134,85,33,118,53),(15,86,103,34,70,119,29,54,135),(16,120,87,30,104,55,35,136,71)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])

80 conjugacy classes

class 1  2 3A3B3C4A4B6A6B6C8A8B8C8D9A9B9C12A12B12C12D12E12F16A···16H18A18B18C24A24B24C24D24E···24L36A···36F48A···48P72A···72L
order1233344666888899912121212121216···161818182424242424···2436···3648···4872···72
size112331123311116662233339···966622223···36···69···96···6

80 irreducible representations

dim1111111111222222226666
type+++-+-
imageC1C2C3C4C6C8C12C16C24C48S3Dic3C3×S3C3⋊C8C3×Dic3C3⋊C16C3×C3⋊C8C3×C3⋊C16C9⋊C6C9⋊C12C9⋊C24C9⋊C48
kernelC9⋊C48C8×3- 1+2C9⋊C16C4×3- 1+2C72C2×3- 1+2C363- 1+2C18C9C3×C24C3×C12C24C3×C6C12C32C6C3C8C4C2C1
# reps11222448816112224481124

Matrix representation of C9⋊C48 in GL8(𝔽433)

01000000
432432000000
001143243100
0000143200
0000043201
00110432432432
0000043200
0010043200
,
222318000000
96211000000
001841780000
003622490000
003621780071255
00024900184362
00184017824900
003621787125500

G:=sub<GL(8,GF(433))| [0,432,0,0,0,0,0,0,1,432,0,0,0,0,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,432,1,0,0,0,0,0,0,431,432,432,432,432,432,0,0,0,0,0,432,0,0,0,0,0,0,1,432,0,0],[222,96,0,0,0,0,0,0,318,211,0,0,0,0,0,0,0,0,184,362,362,0,184,362,0,0,178,249,178,249,0,178,0,0,0,0,0,0,178,71,0,0,0,0,0,0,249,255,0,0,0,0,71,184,0,0,0,0,0,0,255,362,0,0] >;

C9⋊C48 in GAP, Magma, Sage, TeX

C_9\rtimes C_{48}
% in TeX

G:=Group("C9:C48");
// GroupNames label

G:=SmallGroup(432,31);
// by ID

G=gap.SmallGroup(432,31);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,-2,-3,-3,42,58,80,10085,4044,292,14118]);
// Polycyclic

G:=Group<a,b|a^9=b^48=1,b*a*b^-1=a^5>;
// generators/relations

Export

Subgroup lattice of C9⋊C48 in TeX

׿
×
𝔽