Extensions 1→N→G→Q→1 with N=C6 and Q=D6⋊S3

Direct product G=N×Q with N=C6 and Q=D6⋊S3
dρLabelID
C6×D6⋊S348C6xD6:S3432,655

Semidirect products G=N:Q with N=C6 and Q=D6⋊S3
extensionφ:Q→Aut NdρLabelID
C61(D6⋊S3) = C2×C339D4φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C648C6:1(D6:S3)432,694
C62(D6⋊S3) = C2×C336D4φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6:2(D6:S3)432,680

Non-split extensions G=N.Q with N=C6 and Q=D6⋊S3
extensionφ:Q→Aut NdρLabelID
C6.1(D6⋊S3) = He33SD16φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C6726C6.1(D6:S3)432,78
C6.2(D6⋊S3) = He32D8φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C6726+C6.2(D6:S3)432,79
C6.3(D6⋊S3) = He32Q16φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C61446-C6.3(D6:S3)432,80
C6.4(D6⋊S3) = C62.3D6φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C6144C6.4(D6:S3)432,96
C6.5(D6⋊S3) = C62.4D6φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C672C6.5(D6:S3)432,97
C6.6(D6⋊S3) = C2×He32D4φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C672C6.6(D6:S3)432,320
C6.7(D6⋊S3) = C339D8φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C6484C6.7(D6:S3)432,457
C6.8(D6⋊S3) = C3318SD16φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C6484C6.8(D6:S3)432,458
C6.9(D6⋊S3) = C339Q16φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C6484C6.9(D6:S3)432,459
C6.10(D6⋊S3) = C62.84D6φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C648C6.10(D6:S3)432,461
C6.11(D6⋊S3) = C62.85D6φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C648C6.11(D6:S3)432,462
C6.12(D6⋊S3) = D36⋊S3φ: D6⋊S3/S3×C6C2 ⊆ Aut C61444C6.12(D6:S3)432,68
C6.13(D6⋊S3) = D12.D9φ: D6⋊S3/S3×C6C2 ⊆ Aut C61444C6.13(D6:S3)432,70
C6.14(D6⋊S3) = Dic6⋊D9φ: D6⋊S3/S3×C6C2 ⊆ Aut C61444C6.14(D6:S3)432,72
C6.15(D6⋊S3) = C12.D18φ: D6⋊S3/S3×C6C2 ⊆ Aut C61444C6.15(D6:S3)432,74
C6.16(D6⋊S3) = C18.Dic6φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.16(D6:S3)432,89
C6.17(D6⋊S3) = D18⋊Dic3φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.17(D6:S3)432,91
C6.18(D6⋊S3) = D6⋊Dic9φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.18(D6:S3)432,93
C6.19(D6⋊S3) = C2×D6⋊D9φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.19(D6:S3)432,311
C6.20(D6⋊S3) = C336D8φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.20(D6:S3)432,436
C6.21(D6⋊S3) = C3312SD16φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.21(D6:S3)432,439
C6.22(D6⋊S3) = C3313SD16φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.22(D6:S3)432,440
C6.23(D6⋊S3) = C336Q16φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.23(D6:S3)432,445
C6.24(D6⋊S3) = C62.77D6φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.24(D6:S3)432,449
C6.25(D6⋊S3) = C62.78D6φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.25(D6:S3)432,450
C6.26(D6⋊S3) = C62.81D6φ: D6⋊S3/S3×C6C2 ⊆ Aut C6144C6.26(D6:S3)432,453
C6.27(D6⋊S3) = C3×C322D8central extension (φ=1)484C6.27(D6:S3)432,418
C6.28(D6⋊S3) = C3×Dic6⋊S3central extension (φ=1)484C6.28(D6:S3)432,420
C6.29(D6⋊S3) = C3×C322Q16central extension (φ=1)484C6.29(D6:S3)432,423
C6.30(D6⋊S3) = C3×D6⋊Dic3central extension (φ=1)48C6.30(D6:S3)432,426
C6.31(D6⋊S3) = C3×C62.C22central extension (φ=1)48C6.31(D6:S3)432,429

׿
×
𝔽