extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(D6⋊S3) = He3⋊3SD16 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | 6 | C6.1(D6:S3) | 432,78 |
C6.2(D6⋊S3) = He3⋊2D8 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | 6+ | C6.2(D6:S3) | 432,79 |
C6.3(D6⋊S3) = He3⋊2Q16 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 144 | 6- | C6.3(D6:S3) | 432,80 |
C6.4(D6⋊S3) = C62.3D6 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 144 | | C6.4(D6:S3) | 432,96 |
C6.5(D6⋊S3) = C62.4D6 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | | C6.5(D6:S3) | 432,97 |
C6.6(D6⋊S3) = C2×He3⋊2D4 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | | C6.6(D6:S3) | 432,320 |
C6.7(D6⋊S3) = C33⋊9D8 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.7(D6:S3) | 432,457 |
C6.8(D6⋊S3) = C33⋊18SD16 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.8(D6:S3) | 432,458 |
C6.9(D6⋊S3) = C33⋊9Q16 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | 4 | C6.9(D6:S3) | 432,459 |
C6.10(D6⋊S3) = C62.84D6 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | | C6.10(D6:S3) | 432,461 |
C6.11(D6⋊S3) = C62.85D6 | φ: D6⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 48 | | C6.11(D6:S3) | 432,462 |
C6.12(D6⋊S3) = D36⋊S3 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | 4 | C6.12(D6:S3) | 432,68 |
C6.13(D6⋊S3) = D12.D9 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | 4 | C6.13(D6:S3) | 432,70 |
C6.14(D6⋊S3) = Dic6⋊D9 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | 4 | C6.14(D6:S3) | 432,72 |
C6.15(D6⋊S3) = C12.D18 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | 4 | C6.15(D6:S3) | 432,74 |
C6.16(D6⋊S3) = C18.Dic6 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.16(D6:S3) | 432,89 |
C6.17(D6⋊S3) = D18⋊Dic3 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.17(D6:S3) | 432,91 |
C6.18(D6⋊S3) = D6⋊Dic9 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.18(D6:S3) | 432,93 |
C6.19(D6⋊S3) = C2×D6⋊D9 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.19(D6:S3) | 432,311 |
C6.20(D6⋊S3) = C33⋊6D8 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.20(D6:S3) | 432,436 |
C6.21(D6⋊S3) = C33⋊12SD16 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.21(D6:S3) | 432,439 |
C6.22(D6⋊S3) = C33⋊13SD16 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.22(D6:S3) | 432,440 |
C6.23(D6⋊S3) = C33⋊6Q16 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.23(D6:S3) | 432,445 |
C6.24(D6⋊S3) = C62.77D6 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.24(D6:S3) | 432,449 |
C6.25(D6⋊S3) = C62.78D6 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.25(D6:S3) | 432,450 |
C6.26(D6⋊S3) = C62.81D6 | φ: D6⋊S3/S3×C6 → C2 ⊆ Aut C6 | 144 | | C6.26(D6:S3) | 432,453 |
C6.27(D6⋊S3) = C3×C32⋊2D8 | central extension (φ=1) | 48 | 4 | C6.27(D6:S3) | 432,418 |
C6.28(D6⋊S3) = C3×Dic6⋊S3 | central extension (φ=1) | 48 | 4 | C6.28(D6:S3) | 432,420 |
C6.29(D6⋊S3) = C3×C32⋊2Q16 | central extension (φ=1) | 48 | 4 | C6.29(D6:S3) | 432,423 |
C6.30(D6⋊S3) = C3×D6⋊Dic3 | central extension (φ=1) | 48 | | C6.30(D6:S3) | 432,426 |
C6.31(D6⋊S3) = C3×C62.C22 | central extension (φ=1) | 48 | | C6.31(D6:S3) | 432,429 |