Copied to
clipboard

G = He32Q16order 432 = 24·33

1st semidirect product of He3 and Q16 acting via Q16/C4=C22

non-abelian, supersoluble, monomial

Aliases: He32Q16, C12.83S32, (C3×C12).3D6, (C2×He3).8D4, He34C8.2C2, He33Q8.1C2, C6.3(D6⋊S3), C324Q8.1S3, C2.5(He32D4), C4.10(C32⋊D6), C321(C3⋊Q16), (C4×He3).3C22, C3.1(C322Q16), (C3×C6).3(C3⋊D4), SmallGroup(432,80)

Series: Derived Chief Lower central Upper central

C1C3C4×He3 — He32Q16
C1C3C32He3C2×He3C4×He3He33Q8 — He32Q16
He3C2×He3C4×He3 — He32Q16
C1C2C4

Generators and relations for He32Q16
 G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, cac-1=ab-1, dad-1=a-1, ae=ea, bc=cb, bd=db, ebe-1=b-1, dcd-1=ece-1=c-1, ede-1=d-1 >

Subgroups: 371 in 71 conjugacy classes, 21 normal (11 characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, C8, Q8, C32, C32, Dic3, C12, C12, Q16, C3×C6, C3×C6, C3⋊C8, C24, Dic6, C3×Q8, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, Dic12, C3⋊Q16, C2×He3, C3×C3⋊C8, C3×Dic6, C324Q8, C32⋊C12, C4×He3, C323Q16, He34C8, He33Q8, He32Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, C3⋊D4, S32, C3⋊Q16, D6⋊S3, C32⋊D6, C322Q16, He32D4, He32Q16

Character table of He32Q16

 class 123A3B3C3D4A4B4C6A6B6C6D8A8B12A12B12C12D12E12F12G12H12I12J24A24B24C24D
 size 11266122363626612181822121212123636363618181818
ρ111111111111111111111111111111    trivial
ρ211111111-11111-1-111111111-1-1-1-1-1-1    linear of order 2
ρ31111111-111111-1-1111111-1-111-1-1-1-1    linear of order 2
ρ41111111-1-1111111111111-1-1-1-11111    linear of order 2
ρ5222-12-122022-1-10022-1-1-12-1-1000000    orthogonal lifted from S3
ρ62222-1-12022-12-100222-1-1-100-1-10000    orthogonal lifted from S3
ρ7222222-200222200-2-2-2-2-2-200000000    orthogonal lifted from D4
ρ8222-12-12-2022-1-10022-1-1-1211000000    orthogonal lifted from D6
ρ92222-1-120-22-12-100222-1-1-100110000    orthogonal lifted from D6
ρ102-22222000-2-2-2-22-200000000002-22-2    symplectic lifted from Q16, Schur index 2
ρ112-22222000-2-2-2-2-220000000000-22-22    symplectic lifted from Q16, Schur index 2
ρ122222-1-1-2002-12-100-2-2-211100--3-30000    complex lifted from C3⋊D4
ρ13222-12-1-20022-1-100-2-2111-2-3--3000000    complex lifted from C3⋊D4
ρ142222-1-1-2002-12-100-2-2-211100-3--30000    complex lifted from C3⋊D4
ρ15222-12-1-20022-1-100-2-2111-2--3-3000000    complex lifted from C3⋊D4
ρ16444-2-214004-2-210044-211-200000000    orthogonal lifted from S32
ρ174-44-24-2000-4-4220000000000000000    symplectic lifted from C3⋊Q16, Schur index 2
ρ184-444-2-2000-42-420000000000000000    symplectic lifted from C3⋊Q16, Schur index 2
ρ19444-2-21-4004-2-2100-4-42-1-1200000000    symplectic lifted from D6⋊S3, Schur index 2
ρ204-44-2-21000-422-100000-3i3i000000000    complex lifted from C322Q16
ρ214-44-2-21000-422-1000003i-3i000000000    complex lifted from C322Q16
ρ2266-3000600-300022-3-300000000-1-1-1-1    orthogonal lifted from C32⋊D6
ρ2366-3000600-3000-2-2-3-3000000001111    orthogonal lifted from C32⋊D6
ρ2466-3000-600-30000033000000003-3-33    orthogonal lifted from He32D4
ρ2566-3000-600-3000003300000000-333-3    orthogonal lifted from He32D4
ρ266-6-30000003000-2233-3300000000ζ87ζ38785ζ3ζ83ζ32838ζ32ζ83ζ38ζ38ζ87ζ3285ζ3285    symplectic faithful, Schur index 2
ρ276-6-300000030002-233-3300000000ζ87ζ3285ζ3285ζ83ζ38ζ38ζ83ζ32838ζ32ζ87ζ38785ζ3    symplectic faithful, Schur index 2
ρ286-6-300000030002-2-333300000000ζ83ζ32838ζ32ζ87ζ38785ζ3ζ87ζ3285ζ3285ζ83ζ38ζ38    symplectic faithful, Schur index 2
ρ296-6-30000003000-22-333300000000ζ83ζ38ζ38ζ87ζ3285ζ3285ζ87ζ38785ζ3ζ83ζ32838ζ32    symplectic faithful, Schur index 2

Smallest permutation representation of He32Q16
On 144 points
Generators in S144
(17 65 78)(18 79 66)(19 67 80)(20 73 68)(21 69 74)(22 75 70)(23 71 76)(24 77 72)(25 89 110)(26 111 90)(27 91 112)(28 105 92)(29 93 106)(30 107 94)(31 95 108)(32 109 96)(33 102 137)(34 138 103)(35 104 139)(36 140 97)(37 98 141)(38 142 99)(39 100 143)(40 144 101)(49 122 133)(50 134 123)(51 124 135)(52 136 125)(53 126 129)(54 130 127)(55 128 131)(56 132 121)
(1 15 117)(2 16 118)(3 9 119)(4 10 120)(5 11 113)(6 12 114)(7 13 115)(8 14 116)(17 78 65)(18 79 66)(19 80 67)(20 73 68)(21 74 69)(22 75 70)(23 76 71)(24 77 72)(25 110 89)(26 111 90)(27 112 91)(28 105 92)(29 106 93)(30 107 94)(31 108 95)(32 109 96)(33 102 137)(34 103 138)(35 104 139)(36 97 140)(37 98 141)(38 99 142)(39 100 143)(40 101 144)(41 61 84)(42 62 85)(43 63 86)(44 64 87)(45 57 88)(46 58 81)(47 59 82)(48 60 83)(49 133 122)(50 134 123)(51 135 124)(52 136 125)(53 129 126)(54 130 127)(55 131 128)(56 132 121)
(1 133 22)(2 23 134)(3 135 24)(4 17 136)(5 129 18)(6 19 130)(7 131 20)(8 21 132)(9 124 77)(10 78 125)(11 126 79)(12 80 127)(13 128 73)(14 74 121)(15 122 75)(16 76 123)(25 35 82)(26 83 36)(27 37 84)(28 85 38)(29 39 86)(30 87 40)(31 33 88)(32 81 34)(41 112 98)(42 99 105)(43 106 100)(44 101 107)(45 108 102)(46 103 109)(47 110 104)(48 97 111)(49 70 117)(50 118 71)(51 72 119)(52 120 65)(53 66 113)(54 114 67)(55 68 115)(56 116 69)(57 95 137)(58 138 96)(59 89 139)(60 140 90)(61 91 141)(62 142 92)(63 93 143)(64 144 94)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 61 5 57)(2 60 6 64)(3 59 7 63)(4 58 8 62)(9 47 13 43)(10 46 14 42)(11 45 15 41)(12 44 16 48)(17 96 21 92)(18 95 22 91)(19 94 23 90)(20 93 24 89)(25 68 29 72)(26 67 30 71)(27 66 31 70)(28 65 32 69)(33 49 37 53)(34 56 38 52)(35 55 39 51)(36 54 40 50)(73 106 77 110)(74 105 78 109)(75 112 79 108)(76 111 80 107)(81 116 85 120)(82 115 86 119)(83 114 87 118)(84 113 88 117)(97 127 101 123)(98 126 102 122)(99 125 103 121)(100 124 104 128)(129 137 133 141)(130 144 134 140)(131 143 135 139)(132 142 136 138)

G:=sub<Sym(144)| (17,65,78)(18,79,66)(19,67,80)(20,73,68)(21,69,74)(22,75,70)(23,71,76)(24,77,72)(25,89,110)(26,111,90)(27,91,112)(28,105,92)(29,93,106)(30,107,94)(31,95,108)(32,109,96)(33,102,137)(34,138,103)(35,104,139)(36,140,97)(37,98,141)(38,142,99)(39,100,143)(40,144,101)(49,122,133)(50,134,123)(51,124,135)(52,136,125)(53,126,129)(54,130,127)(55,128,131)(56,132,121), (1,15,117)(2,16,118)(3,9,119)(4,10,120)(5,11,113)(6,12,114)(7,13,115)(8,14,116)(17,78,65)(18,79,66)(19,80,67)(20,73,68)(21,74,69)(22,75,70)(23,76,71)(24,77,72)(25,110,89)(26,111,90)(27,112,91)(28,105,92)(29,106,93)(30,107,94)(31,108,95)(32,109,96)(33,102,137)(34,103,138)(35,104,139)(36,97,140)(37,98,141)(38,99,142)(39,100,143)(40,101,144)(41,61,84)(42,62,85)(43,63,86)(44,64,87)(45,57,88)(46,58,81)(47,59,82)(48,60,83)(49,133,122)(50,134,123)(51,135,124)(52,136,125)(53,129,126)(54,130,127)(55,131,128)(56,132,121), (1,133,22)(2,23,134)(3,135,24)(4,17,136)(5,129,18)(6,19,130)(7,131,20)(8,21,132)(9,124,77)(10,78,125)(11,126,79)(12,80,127)(13,128,73)(14,74,121)(15,122,75)(16,76,123)(25,35,82)(26,83,36)(27,37,84)(28,85,38)(29,39,86)(30,87,40)(31,33,88)(32,81,34)(41,112,98)(42,99,105)(43,106,100)(44,101,107)(45,108,102)(46,103,109)(47,110,104)(48,97,111)(49,70,117)(50,118,71)(51,72,119)(52,120,65)(53,66,113)(54,114,67)(55,68,115)(56,116,69)(57,95,137)(58,138,96)(59,89,139)(60,140,90)(61,91,141)(62,142,92)(63,93,143)(64,144,94), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,47,13,43)(10,46,14,42)(11,45,15,41)(12,44,16,48)(17,96,21,92)(18,95,22,91)(19,94,23,90)(20,93,24,89)(25,68,29,72)(26,67,30,71)(27,66,31,70)(28,65,32,69)(33,49,37,53)(34,56,38,52)(35,55,39,51)(36,54,40,50)(73,106,77,110)(74,105,78,109)(75,112,79,108)(76,111,80,107)(81,116,85,120)(82,115,86,119)(83,114,87,118)(84,113,88,117)(97,127,101,123)(98,126,102,122)(99,125,103,121)(100,124,104,128)(129,137,133,141)(130,144,134,140)(131,143,135,139)(132,142,136,138)>;

G:=Group( (17,65,78)(18,79,66)(19,67,80)(20,73,68)(21,69,74)(22,75,70)(23,71,76)(24,77,72)(25,89,110)(26,111,90)(27,91,112)(28,105,92)(29,93,106)(30,107,94)(31,95,108)(32,109,96)(33,102,137)(34,138,103)(35,104,139)(36,140,97)(37,98,141)(38,142,99)(39,100,143)(40,144,101)(49,122,133)(50,134,123)(51,124,135)(52,136,125)(53,126,129)(54,130,127)(55,128,131)(56,132,121), (1,15,117)(2,16,118)(3,9,119)(4,10,120)(5,11,113)(6,12,114)(7,13,115)(8,14,116)(17,78,65)(18,79,66)(19,80,67)(20,73,68)(21,74,69)(22,75,70)(23,76,71)(24,77,72)(25,110,89)(26,111,90)(27,112,91)(28,105,92)(29,106,93)(30,107,94)(31,108,95)(32,109,96)(33,102,137)(34,103,138)(35,104,139)(36,97,140)(37,98,141)(38,99,142)(39,100,143)(40,101,144)(41,61,84)(42,62,85)(43,63,86)(44,64,87)(45,57,88)(46,58,81)(47,59,82)(48,60,83)(49,133,122)(50,134,123)(51,135,124)(52,136,125)(53,129,126)(54,130,127)(55,131,128)(56,132,121), (1,133,22)(2,23,134)(3,135,24)(4,17,136)(5,129,18)(6,19,130)(7,131,20)(8,21,132)(9,124,77)(10,78,125)(11,126,79)(12,80,127)(13,128,73)(14,74,121)(15,122,75)(16,76,123)(25,35,82)(26,83,36)(27,37,84)(28,85,38)(29,39,86)(30,87,40)(31,33,88)(32,81,34)(41,112,98)(42,99,105)(43,106,100)(44,101,107)(45,108,102)(46,103,109)(47,110,104)(48,97,111)(49,70,117)(50,118,71)(51,72,119)(52,120,65)(53,66,113)(54,114,67)(55,68,115)(56,116,69)(57,95,137)(58,138,96)(59,89,139)(60,140,90)(61,91,141)(62,142,92)(63,93,143)(64,144,94), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,47,13,43)(10,46,14,42)(11,45,15,41)(12,44,16,48)(17,96,21,92)(18,95,22,91)(19,94,23,90)(20,93,24,89)(25,68,29,72)(26,67,30,71)(27,66,31,70)(28,65,32,69)(33,49,37,53)(34,56,38,52)(35,55,39,51)(36,54,40,50)(73,106,77,110)(74,105,78,109)(75,112,79,108)(76,111,80,107)(81,116,85,120)(82,115,86,119)(83,114,87,118)(84,113,88,117)(97,127,101,123)(98,126,102,122)(99,125,103,121)(100,124,104,128)(129,137,133,141)(130,144,134,140)(131,143,135,139)(132,142,136,138) );

G=PermutationGroup([[(17,65,78),(18,79,66),(19,67,80),(20,73,68),(21,69,74),(22,75,70),(23,71,76),(24,77,72),(25,89,110),(26,111,90),(27,91,112),(28,105,92),(29,93,106),(30,107,94),(31,95,108),(32,109,96),(33,102,137),(34,138,103),(35,104,139),(36,140,97),(37,98,141),(38,142,99),(39,100,143),(40,144,101),(49,122,133),(50,134,123),(51,124,135),(52,136,125),(53,126,129),(54,130,127),(55,128,131),(56,132,121)], [(1,15,117),(2,16,118),(3,9,119),(4,10,120),(5,11,113),(6,12,114),(7,13,115),(8,14,116),(17,78,65),(18,79,66),(19,80,67),(20,73,68),(21,74,69),(22,75,70),(23,76,71),(24,77,72),(25,110,89),(26,111,90),(27,112,91),(28,105,92),(29,106,93),(30,107,94),(31,108,95),(32,109,96),(33,102,137),(34,103,138),(35,104,139),(36,97,140),(37,98,141),(38,99,142),(39,100,143),(40,101,144),(41,61,84),(42,62,85),(43,63,86),(44,64,87),(45,57,88),(46,58,81),(47,59,82),(48,60,83),(49,133,122),(50,134,123),(51,135,124),(52,136,125),(53,129,126),(54,130,127),(55,131,128),(56,132,121)], [(1,133,22),(2,23,134),(3,135,24),(4,17,136),(5,129,18),(6,19,130),(7,131,20),(8,21,132),(9,124,77),(10,78,125),(11,126,79),(12,80,127),(13,128,73),(14,74,121),(15,122,75),(16,76,123),(25,35,82),(26,83,36),(27,37,84),(28,85,38),(29,39,86),(30,87,40),(31,33,88),(32,81,34),(41,112,98),(42,99,105),(43,106,100),(44,101,107),(45,108,102),(46,103,109),(47,110,104),(48,97,111),(49,70,117),(50,118,71),(51,72,119),(52,120,65),(53,66,113),(54,114,67),(55,68,115),(56,116,69),(57,95,137),(58,138,96),(59,89,139),(60,140,90),(61,91,141),(62,142,92),(63,93,143),(64,144,94)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,61,5,57),(2,60,6,64),(3,59,7,63),(4,58,8,62),(9,47,13,43),(10,46,14,42),(11,45,15,41),(12,44,16,48),(17,96,21,92),(18,95,22,91),(19,94,23,90),(20,93,24,89),(25,68,29,72),(26,67,30,71),(27,66,31,70),(28,65,32,69),(33,49,37,53),(34,56,38,52),(35,55,39,51),(36,54,40,50),(73,106,77,110),(74,105,78,109),(75,112,79,108),(76,111,80,107),(81,116,85,120),(82,115,86,119),(83,114,87,118),(84,113,88,117),(97,127,101,123),(98,126,102,122),(99,125,103,121),(100,124,104,128),(129,137,133,141),(130,144,134,140),(131,143,135,139),(132,142,136,138)]])

Matrix representation of He32Q16 in GL10(𝔽73)

07200000000
17200000000
00072000000
00172000000
0000100000
0000010000
0000000100
000000727200
000000007272
0000000010
,
1000000000
0100000000
0010000000
0001000000
0000010000
000072720000
0000000100
000000727200
0000000001
000000007272
,
72100000000
72000000000
3772072000000
136172000000
0000001000
0000000100
0000000010
0000000001
0000100000
0000010000
,
124300000000
556100000000
10393248000000
4963741000000
00007140000
000059660000
00000000714
000000005966
00000071400
000000596600
,
70456717000000
28425611000000
170328000000
0174531000000
000044250000
000054290000
000000004425
000000005429
000000442500
000000542900

G:=sub<GL(10,GF(73))| [0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72],[72,72,37,1,0,0,0,0,0,0,1,0,72,36,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[12,55,10,49,0,0,0,0,0,0,43,61,39,63,0,0,0,0,0,0,0,0,32,7,0,0,0,0,0,0,0,0,48,41,0,0,0,0,0,0,0,0,0,0,7,59,0,0,0,0,0,0,0,0,14,66,0,0,0,0,0,0,0,0,0,0,0,0,7,59,0,0,0,0,0,0,0,0,14,66,0,0,0,0,0,0,7,59,0,0,0,0,0,0,0,0,14,66,0,0],[70,28,17,0,0,0,0,0,0,0,45,42,0,17,0,0,0,0,0,0,67,56,3,45,0,0,0,0,0,0,17,11,28,31,0,0,0,0,0,0,0,0,0,0,44,54,0,0,0,0,0,0,0,0,25,29,0,0,0,0,0,0,0,0,0,0,0,0,44,54,0,0,0,0,0,0,0,0,25,29,0,0,0,0,0,0,44,54,0,0,0,0,0,0,0,0,25,29,0,0] >;

He32Q16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_2Q_{16}
% in TeX

G:=Group("He3:2Q16");
// GroupNames label

G:=SmallGroup(432,80);
// by ID

G=gap.SmallGroup(432,80);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,85,64,254,135,58,571,4037,537,14118,7069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,d*c*d^-1=e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

Export

Character table of He32Q16 in TeX

׿
×
𝔽