non-abelian, supersoluble, monomial
Aliases: He3⋊3SD16, C12.81S32, (C3×C12).1D6, He3⋊4C8⋊2C2, He3⋊3Q8⋊1C2, (C2×He3).6D4, C32⋊4Q8⋊1S3, C12⋊S3.1S3, He3⋊4D4.1C2, C4.8(C32⋊D6), C6.1(D6⋊S3), C2.3(He3⋊2D4), C32⋊2(D4.S3), (C4×He3).1C22, C32⋊2(Q8⋊2S3), C3.1(Dic6⋊S3), (C3×C6).1(C3⋊D4), SmallGroup(432,78)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊3SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, cac-1=ab-1, dad-1=eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=c-1, ce=ec, ede=d3 >
Subgroups: 511 in 78 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, SD16, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, D12, C3×D4, C3×Q8, He3, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C24⋊C2, D4.S3, Q8⋊2S3, C32⋊C6, C2×He3, C3×C3⋊C8, C3×Dic6, C3×D12, C32⋊4Q8, C12⋊S3, C32⋊C12, C4×He3, C2×C32⋊C6, D12.S3, C32⋊5SD16, He3⋊4C8, He3⋊3Q8, He3⋊4D4, He3⋊3SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊D4, S32, D4.S3, Q8⋊2S3, D6⋊S3, C32⋊D6, Dic6⋊S3, He3⋊2D4, He3⋊3SD16
Character table of He3⋊3SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 36 | 2 | 6 | 6 | 12 | 2 | 36 | 2 | 6 | 6 | 12 | 36 | 36 | 18 | 18 | 2 | 2 | 12 | 12 | 12 | 12 | 36 | 36 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | 2 | -2 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | -2 | 2 | -1 | 2 | -1 | 2 | 0 | 2 | 2 | -1 | -1 | 1 | 1 | 0 | 0 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ7 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ9 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | -2 | 0 | 2 | 2 | -1 | -1 | -√-3 | √-3 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ11 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | -2 | 0 | 2 | 2 | -1 | -1 | √-3 | -√-3 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ12 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ13 | 2 | 2 | 0 | 2 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 1 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C3⋊D4 |
ρ14 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | complex lifted from SD16 |
ρ15 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | complex lifted from SD16 |
ρ16 | 4 | 4 | 0 | 4 | -2 | -2 | 1 | 4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 4 | 4 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ17 | 4 | -4 | 0 | 4 | 4 | -2 | -2 | 0 | 0 | -4 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ18 | 4 | 4 | 0 | 4 | -2 | -2 | 1 | -4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -4 | -4 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D6⋊S3, Schur index 2 |
ρ19 | 4 | -4 | 0 | 4 | -2 | 4 | -2 | 0 | 0 | -4 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ20 | 4 | -4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from Dic6⋊S3 |
ρ21 | 4 | -4 | 0 | 4 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from Dic6⋊S3 |
ρ22 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from C32⋊D6 |
ρ23 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from C32⋊D6 |
ρ24 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | -√3 | √3 | orthogonal lifted from He3⋊2D4 |
ρ25 | 6 | 6 | 0 | -3 | 0 | 0 | 0 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | √3 | -√3 | orthogonal lifted from He3⋊2D4 |
ρ26 | 6 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -3√3 | 3√3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | complex faithful |
ρ27 | 6 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 3√3 | -3√3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ32+ζ87-ζ85ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | complex faithful |
ρ28 | 6 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -3√3 | 3√3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | complex faithful |
ρ29 | 6 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 3√3 | -3√3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ32+ζ83-ζ8ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | complex faithful |
(1 47 68)(2 69 48)(3 41 70)(4 71 42)(5 43 72)(6 65 44)(7 45 66)(8 67 46)(9 63 25)(10 26 64)(11 57 27)(12 28 58)(13 59 29)(14 30 60)(15 61 31)(16 32 62)(17 39 49)(18 50 40)(19 33 51)(20 52 34)(21 35 53)(22 54 36)(23 37 55)(24 56 38)
(1 22 25)(2 23 26)(3 24 27)(4 17 28)(5 18 29)(6 19 30)(7 20 31)(8 21 32)(9 47 54)(10 48 55)(11 41 56)(12 42 49)(13 43 50)(14 44 51)(15 45 52)(16 46 53)(33 60 65)(34 61 66)(35 62 67)(36 63 68)(37 64 69)(38 57 70)(39 58 71)(40 59 72)
(9 47 54)(10 55 48)(11 41 56)(12 49 42)(13 43 50)(14 51 44)(15 45 52)(16 53 46)(33 60 65)(34 66 61)(35 62 67)(36 68 63)(37 64 69)(38 70 57)(39 58 71)(40 72 59)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 36)(10 39)(11 34)(12 37)(13 40)(14 35)(15 38)(16 33)(17 26)(18 29)(19 32)(20 27)(21 30)(22 25)(23 28)(24 31)(41 66)(42 69)(43 72)(44 67)(45 70)(46 65)(47 68)(48 71)(49 64)(50 59)(51 62)(52 57)(53 60)(54 63)(55 58)(56 61)
G:=sub<Sym(72)| (1,47,68)(2,69,48)(3,41,70)(4,71,42)(5,43,72)(6,65,44)(7,45,66)(8,67,46)(9,63,25)(10,26,64)(11,57,27)(12,28,58)(13,59,29)(14,30,60)(15,61,31)(16,32,62)(17,39,49)(18,50,40)(19,33,51)(20,52,34)(21,35,53)(22,54,36)(23,37,55)(24,56,38), (1,22,25)(2,23,26)(3,24,27)(4,17,28)(5,18,29)(6,19,30)(7,20,31)(8,21,32)(9,47,54)(10,48,55)(11,41,56)(12,42,49)(13,43,50)(14,44,51)(15,45,52)(16,46,53)(33,60,65)(34,61,66)(35,62,67)(36,63,68)(37,64,69)(38,57,70)(39,58,71)(40,59,72), (9,47,54)(10,55,48)(11,41,56)(12,49,42)(13,43,50)(14,51,44)(15,45,52)(16,53,46)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,36)(10,39)(11,34)(12,37)(13,40)(14,35)(15,38)(16,33)(17,26)(18,29)(19,32)(20,27)(21,30)(22,25)(23,28)(24,31)(41,66)(42,69)(43,72)(44,67)(45,70)(46,65)(47,68)(48,71)(49,64)(50,59)(51,62)(52,57)(53,60)(54,63)(55,58)(56,61)>;
G:=Group( (1,47,68)(2,69,48)(3,41,70)(4,71,42)(5,43,72)(6,65,44)(7,45,66)(8,67,46)(9,63,25)(10,26,64)(11,57,27)(12,28,58)(13,59,29)(14,30,60)(15,61,31)(16,32,62)(17,39,49)(18,50,40)(19,33,51)(20,52,34)(21,35,53)(22,54,36)(23,37,55)(24,56,38), (1,22,25)(2,23,26)(3,24,27)(4,17,28)(5,18,29)(6,19,30)(7,20,31)(8,21,32)(9,47,54)(10,48,55)(11,41,56)(12,42,49)(13,43,50)(14,44,51)(15,45,52)(16,46,53)(33,60,65)(34,61,66)(35,62,67)(36,63,68)(37,64,69)(38,57,70)(39,58,71)(40,59,72), (9,47,54)(10,55,48)(11,41,56)(12,49,42)(13,43,50)(14,51,44)(15,45,52)(16,53,46)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,36)(10,39)(11,34)(12,37)(13,40)(14,35)(15,38)(16,33)(17,26)(18,29)(19,32)(20,27)(21,30)(22,25)(23,28)(24,31)(41,66)(42,69)(43,72)(44,67)(45,70)(46,65)(47,68)(48,71)(49,64)(50,59)(51,62)(52,57)(53,60)(54,63)(55,58)(56,61) );
G=PermutationGroup([[(1,47,68),(2,69,48),(3,41,70),(4,71,42),(5,43,72),(6,65,44),(7,45,66),(8,67,46),(9,63,25),(10,26,64),(11,57,27),(12,28,58),(13,59,29),(14,30,60),(15,61,31),(16,32,62),(17,39,49),(18,50,40),(19,33,51),(20,52,34),(21,35,53),(22,54,36),(23,37,55),(24,56,38)], [(1,22,25),(2,23,26),(3,24,27),(4,17,28),(5,18,29),(6,19,30),(7,20,31),(8,21,32),(9,47,54),(10,48,55),(11,41,56),(12,42,49),(13,43,50),(14,44,51),(15,45,52),(16,46,53),(33,60,65),(34,61,66),(35,62,67),(36,63,68),(37,64,69),(38,57,70),(39,58,71),(40,59,72)], [(9,47,54),(10,55,48),(11,41,56),(12,49,42),(13,43,50),(14,51,44),(15,45,52),(16,53,46),(33,60,65),(34,66,61),(35,62,67),(36,68,63),(37,64,69),(38,70,57),(39,58,71),(40,72,59)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,36),(10,39),(11,34),(12,37),(13,40),(14,35),(15,38),(16,33),(17,26),(18,29),(19,32),(20,27),(21,30),(22,25),(23,28),(24,31),(41,66),(42,69),(43,72),(44,67),(45,70),(46,65),(47,68),(48,71),(49,64),(50,59),(51,62),(52,57),(53,60),(54,63),(55,58),(56,61)]])
Matrix representation of He3⋊3SD16 ►in GL10(𝔽73)
59 | 27 | 27 | 19 | 0 | 0 | 0 | 0 | 0 | 0 |
46 | 13 | 54 | 46 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 27 | 13 | 46 | 0 | 0 | 0 | 0 | 0 | 0 |
46 | 50 | 27 | 59 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 51 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 62 | 22 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 31 | 51 | 11 | 0 | 0 | 0 | 0 | 0 | 0 |
42 | 62 | 62 | 22 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(10,GF(73))| [59,46,23,46,0,0,0,0,0,0,27,13,27,50,0,0,0,0,0,0,27,54,13,27,0,0,0,0,0,0,19,46,46,59,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0],[0,0,11,42,0,0,0,0,0,0,0,0,31,62,0,0,0,0,0,0,51,62,51,62,0,0,0,0,0,0,11,22,11,22,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0],[1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0] >;
He3⋊3SD16 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_3{\rm SD}_{16}
% in TeX
G:=Group("He3:3SD16");
// GroupNames label
G:=SmallGroup(432,78);
// by ID
G=gap.SmallGroup(432,78);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,64,254,135,58,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^3>;
// generators/relations
Export