Extensions 1→N→G→Q→1 with N=C32 and Q=C4×A4

Direct product G=N×Q with N=C32 and Q=C4×A4

Semidirect products G=N:Q with N=C32 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C32⋊(C4×A4) = C624C12φ: C4×A4/C23C6 ⊆ Aut C32366-C3^2:(C4xA4)432,272
C322(C4×A4) = A4×C32⋊C4φ: C4×A4/A4C4 ⊆ Aut C322412+C3^2:2(C4xA4)432,744
C323(C4×A4) = C4×C32⋊A4φ: C4×A4/C22×C4C3 ⊆ Aut C32363C3^2:3(C4xA4)432,333
C324(C4×A4) = C3×Dic3×A4φ: C4×A4/C2×A4C2 ⊆ Aut C32366C3^2:4(C4xA4)432,624
C325(C4×A4) = A4×C3⋊Dic3φ: C4×A4/C2×A4C2 ⊆ Aut C32108C3^2:5(C4xA4)432,627

Non-split extensions G=N.Q with N=C32 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C32.(C4×A4) = C4×C32.A4φ: C4×A4/C22×C4C3 ⊆ Aut C32363C3^2.(C4xA4)432,332
C32.2(C4×A4) = Dic3×C3.A4φ: C4×A4/C2×A4C2 ⊆ Aut C32366C3^2.2(C4xA4)432,271
C32.3(C4×A4) = C12×C3.A4central extension (φ=1)108C3^2.3(C4xA4)432,331