extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C4×C3⋊S3) = C12.69S32 | φ: C4×C3⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | | C6.1(C4xC3:S3) | 432,432 |
C6.2(C4×C3⋊S3) = C33⋊9M4(2) | φ: C4×C3⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | | C6.2(C4xC3:S3) | 432,435 |
C6.3(C4×C3⋊S3) = Dic3×C3⋊Dic3 | φ: C4×C3⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 144 | | C6.3(C4xC3:S3) | 432,448 |
C6.4(C4×C3⋊S3) = C62.79D6 | φ: C4×C3⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 72 | | C6.4(C4xC3:S3) | 432,451 |
C6.5(C4×C3⋊S3) = C62.81D6 | φ: C4×C3⋊S3/C3⋊Dic3 → C2 ⊆ Aut C6 | 144 | | C6.5(C4xC3:S3) | 432,453 |
C6.6(C4×C3⋊S3) = C8×C9⋊S3 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 216 | | C6.6(C4xC3:S3) | 432,169 |
C6.7(C4×C3⋊S3) = C72⋊S3 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 216 | | C6.7(C4xC3:S3) | 432,170 |
C6.8(C4×C3⋊S3) = C4×C9⋊Dic3 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 432 | | C6.8(C4xC3:S3) | 432,180 |
C6.9(C4×C3⋊S3) = C6.Dic18 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 432 | | C6.9(C4xC3:S3) | 432,181 |
C6.10(C4×C3⋊S3) = C6.11D36 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 216 | | C6.10(C4xC3:S3) | 432,183 |
C6.11(C4×C3⋊S3) = C2×C4×C9⋊S3 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 216 | | C6.11(C4xC3:S3) | 432,381 |
C6.12(C4×C3⋊S3) = C8×C33⋊C2 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 216 | | C6.12(C4xC3:S3) | 432,496 |
C6.13(C4×C3⋊S3) = C33⋊15M4(2) | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 216 | | C6.13(C4xC3:S3) | 432,497 |
C6.14(C4×C3⋊S3) = C4×C33⋊5C4 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 432 | | C6.14(C4xC3:S3) | 432,503 |
C6.15(C4×C3⋊S3) = C62.146D6 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 432 | | C6.15(C4xC3:S3) | 432,504 |
C6.16(C4×C3⋊S3) = C62.148D6 | φ: C4×C3⋊S3/C3×C12 → C2 ⊆ Aut C6 | 216 | | C6.16(C4xC3:S3) | 432,506 |
C6.17(C4×C3⋊S3) = C3⋊S3×C3⋊C8 | φ: C4×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.17(C4xC3:S3) | 432,431 |
C6.18(C4×C3⋊S3) = C33⋊8M4(2) | φ: C4×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.18(C4xC3:S3) | 432,434 |
C6.19(C4×C3⋊S3) = C62.78D6 | φ: C4×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.19(C4xC3:S3) | 432,450 |
C6.20(C4×C3⋊S3) = C62.82D6 | φ: C4×C3⋊S3/C2×C3⋊S3 → C2 ⊆ Aut C6 | 144 | | C6.20(C4xC3:S3) | 432,454 |
C6.21(C4×C3⋊S3) = C8×He3⋊C2 | central extension (φ=1) | 72 | 3 | C6.21(C4xC3:S3) | 432,173 |
C6.22(C4×C3⋊S3) = C4×He3⋊3C4 | central extension (φ=1) | 144 | | C6.22(C4xC3:S3) | 432,186 |
C6.23(C4×C3⋊S3) = C2×C4×He3⋊C2 | central extension (φ=1) | 72 | | C6.23(C4xC3:S3) | 432,385 |
C6.24(C4×C3⋊S3) = C3⋊S3×C24 | central extension (φ=1) | 144 | | C6.24(C4xC3:S3) | 432,480 |
C6.25(C4×C3⋊S3) = C3×C24⋊S3 | central extension (φ=1) | 144 | | C6.25(C4xC3:S3) | 432,481 |
C6.26(C4×C3⋊S3) = C12×C3⋊Dic3 | central extension (φ=1) | 144 | | C6.26(C4xC3:S3) | 432,487 |
C6.27(C4×C3⋊S3) = C3×C6.Dic6 | central extension (φ=1) | 144 | | C6.27(C4xC3:S3) | 432,488 |
C6.28(C4×C3⋊S3) = C3×C6.11D12 | central extension (φ=1) | 144 | | C6.28(C4xC3:S3) | 432,490 |
C6.29(C4×C3⋊S3) = He3⋊6M4(2) | central stem extension (φ=1) | 72 | 6 | C6.29(C4xC3:S3) | 432,174 |
C6.30(C4×C3⋊S3) = C62.29D6 | central stem extension (φ=1) | 144 | | C6.30(C4xC3:S3) | 432,187 |
C6.31(C4×C3⋊S3) = C62.31D6 | central stem extension (φ=1) | 72 | | C6.31(C4xC3:S3) | 432,189 |