Extensions 1→N→G→Q→1 with N=C3 and Q=D125S3

Direct product G=N×Q with N=C3 and Q=D125S3

Semidirect products G=N:Q with N=C3 and Q=D125S3
extensionφ:Q→Aut NdρLabelID
C31(D125S3) = D6.S32φ: D125S3/S3×Dic3C2 ⊆ Aut C3488-C3:1(D12:5S3)432,607
C32(D125S3) = D6.4S32φ: D125S3/D6⋊S3C2 ⊆ Aut C3488-C3:2(D12:5S3)432,608
C33(D125S3) = C12.57S32φ: D125S3/S3×C12C2 ⊆ Aut C3144C3:3(D12:5S3)432,668
C34(D125S3) = (C3×D12)⋊S3φ: D125S3/C3×D12C2 ⊆ Aut C3144C3:4(D12:5S3)432,661
C35(D125S3) = C12⋊S312S3φ: D125S3/C324Q8C2 ⊆ Aut C3484C3:5(D12:5S3)432,688

Non-split extensions G=N.Q with N=C3 and Q=D125S3
extensionφ:Q→Aut NdρLabelID
C3.1(D125S3) = D365S3φ: D125S3/S3×C12C2 ⊆ Aut C31444-C3.1(D12:5S3)432,288
C3.2(D125S3) = D125D9φ: D125S3/C3×D12C2 ⊆ Aut C31444-C3.2(D12:5S3)432,285
C3.3(D125S3) = C12⋊S3⋊S3φ: D125S3/C324Q8C2 ⊆ Aut C37212+C3.3(D12:5S3)432,295