Extensions 1→N→G→Q→1 with N=C3 and Q=D365C2

Direct product G=N×Q with N=C3 and Q=D365C2
dρLabelID
C3×D365C2722C3xD36:5C2432,344

Semidirect products G=N:Q with N=C3 and Q=D365C2
extensionφ:Q→Aut NdρLabelID
C31(D365C2) = Dic9.D6φ: D365C2/Dic18C2 ⊆ Aut C3724+C3:1(D36:5C2)432,289
C32(D365C2) = D6.D18φ: D365C2/C4×D9C2 ⊆ Aut C3724C3:2(D36:5C2)432,287
C33(D365C2) = D365S3φ: D365C2/D36C2 ⊆ Aut C31444-C3:3(D36:5C2)432,288
C34(D365C2) = D18.3D6φ: D365C2/C9⋊D4C2 ⊆ Aut C3724C3:4(D36:5C2)432,305
C35(D365C2) = C36.70D6φ: D365C2/C2×C36C2 ⊆ Aut C3216C3:5(D36:5C2)432,383

Non-split extensions G=N.Q with N=C3 and Q=D365C2
extensionφ:Q→Aut NdρLabelID
C3.(D365C2) = D1085C2φ: D365C2/C2×C36C2 ⊆ Aut C32162C3.(D36:5C2)432,46

׿
×
𝔽