Extensions 1→N→G→Q→1 with N=C3 and Q=D42D9

Direct product G=N×Q with N=C3 and Q=D42D9
dρLabelID
C3×D42D9724C3xD4:2D9432,357

Semidirect products G=N:Q with N=C3 and Q=D42D9
extensionφ:Q→Aut NdρLabelID
C31(D42D9) = D12⋊D9φ: D42D9/Dic18C2 ⊆ Aut C3724C3:1(D4:2D9)432,286
C32(D42D9) = D125D9φ: D42D9/C4×D9C2 ⊆ Aut C31444-C3:2(D4:2D9)432,285
C33(D42D9) = Dic3.D18φ: D42D9/C2×Dic9C2 ⊆ Aut C3724C3:3(D4:2D9)432,309
C34(D42D9) = D18.4D6φ: D42D9/C9⋊D4C2 ⊆ Aut C3724-C3:4(D4:2D9)432,310
C35(D42D9) = C36.27D6φ: D42D9/D4×C9C2 ⊆ Aut C3216C3:5(D4:2D9)432,389

Non-split extensions G=N.Q with N=C3 and Q=D42D9
extensionφ:Q→Aut NdρLabelID
C3.(D42D9) = D42D27φ: D42D9/D4×C9C2 ⊆ Aut C32164-C3.(D4:2D9)432,48

׿
×
𝔽